岩土力学 ›› 2018, Vol. 39 ›› Issue (S2): 432-442.doi: 10.16285/j.rsm.2018.1569

• 数值分析 • 上一篇    下一篇

现场堆石体振动碾压的颗粒流模拟及验证

李 杨1, 2, 3,佘成学1,朱焕春2   

  1. 1. 武汉大学 水资源与水电工程科学国家重点实验室,湖北 武汉 430072;2. 北京华根仕数据技术有限公司,北京 100044; 3. 依泰斯卡(武汉)咨询有限公司,湖北 武汉 430205
  • 收稿日期:2018-08-27 出版日期:2018-12-21 发布日期:2019-01-06
  • 作者简介:李杨,男,1989年生,博士,主要从事现场堆石体力学性质的颗粒流模拟研究。

Simulation and verification of particle flow of vibration rolling compaction of field rockfill

LI Yang1, 2, 3, SHE Cheng-xue1, ZHU Huan-chun3   

  1. 1. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei 430072, China; 2. Beijing DDAMM Technology Co., Ltd., Beijing 100044, China; 3. Itasca Consulting China, Ltd., Wuhan, Hubei 430205, China
  • Received:2018-08-27 Online:2018-12-21 Published:2019-01-06

摘要: 围绕现场堆石体振动碾压的颗粒流模拟及验证展开研究。首先,基于振动碾的双自由度集中质量模型,建立了对应的等效颗粒流模拟方法,然后考虑到现场堆石体由于“骨料分离”而产生的分层特性,建立了反映分层特性的堆石体颗粒流模型。其次,基于相对密实度一致性原则推导建立了二维、三维沉降变形的定量关系。最后,基于建立的数值模型对典型的工程案例进行验证模拟,并从沉降率、堆石料破碎、级配和孔隙率演化规律等多个角度进行论证分析。研究结果表明,数值试验较为真实地反映了实际工程中堆石体在振动碾压条件下的宏细观动力响应特征,验证了数值试验方法的可行性与合理性。相关研究有利于加深对于堆石体振动碾压细观机理的认识与理解,也为进一步研究现场堆石体振动碾压后的力学性质奠定了模型基础。

关键词: 现场堆石体, 振动碾压, 数值模拟, 颗粒流

Abstract: Numerical simulations based on the PFC2D are conducted to investigate the vibration rolling compaction(VRC) of prototype rockfill. At first, an equivalent numerical model for vibrating roller is developed based on the analytical 2-degree-of freedom lumped mass model, in which interaction between drum and frame is considered carefully. Secondly, a practical modelling procedure for prototype rockfill is proposed; so that the segregation behavior of rockfill grains can be replicated truthfully. Thirdly, based on the prin-cipal of relative degree of density, settlement relationship between 2D and 3D sample is derived in an analytical way. Finally, a practical case in real project is replicated by the proposed discrete model; and simulation results are compared to the observed data in site, such as settlement, breakage ratio, grading curve and porosity. The research results show that the proposed numerical model can replicate the macro and meso-behavior of prototype rockfill during VRC progress in a reasonable way, proving the feasibility and correctness. Related researchments can help to understand the mesoscopic mechanism of dynamic response of prototype rockfill under VRC load, and lay the foundation of investigating the mechanical behavior of compacted prototype rockfill in future.

Key words: prototype rockfill, vibration rolling compaction, numerical simulation, particle flow code

中图分类号: 

  • TU 452
[1] 卞康, 陈彦安, 刘建, 崔德山, 李一冉, 梁文迪, 韩啸. 不同吸水时间下页岩卸荷破坏特征的 颗粒离散元研究[J]. 岩土力学, 2020, 41(S1): 355-367.
[2] 毛浩宇, 徐奴文, 李彪, 樊义林, 吴家耀, 孟国涛, . 基于离散元模拟和微震监测的白鹤滩水电站左岸地下厂房稳定性分析[J]. 岩土力学, 2020, 41(7): 2470-2484.
[3] 史林肯, 周辉, 宋明, 卢景景, 张传庆, 路新景, . 深部复合地层TBM开挖扰动模型试验研究[J]. 岩土力学, 2020, 41(6): 1933-1943.
[4] 张振, 张朝, 叶观宝, 王萌, 肖彦, 程义, . 劲芯水泥土桩承载路堤渐进式失稳破坏机制[J]. 岩土力学, 2020, 41(6): 2122-2131.
[5] 苏杰, 周正华, 李小军, 董青, 李玉萍, 陈柳. 基于偏振特性的下孔法剪切波到时判别问题探讨[J]. 岩土力学, 2020, 41(4): 1420-1428.
[6] 杨高升, 白冰, 姚晓亮, . 高含冰量冻土路基融化固结规律研究[J]. 岩土力学, 2020, 41(3): 1010-1018.
[7] 马秋峰, 秦跃平, 周天白, 杨小彬. 岩石剪切断裂面接触算法的开发与应用[J]. 岩土力学, 2020, 41(3): 1074-1085.
[8] 李康, 王威, 杨典森, 陈卫忠, 亓宪寅, 谭彩. 周期振荡法在低渗透测量中的应用研究[J]. 岩土力学, 2020, 41(3): 1086-1094.
[9] 李翻翻, 陈卫忠, 雷江, 于洪丹, 马永尚, . 基于塑性损伤的黏土岩力学特性研究[J]. 岩土力学, 2020, 41(1): 132-140.
[10] 夏 坤, 董林, 蒲小武, 李璐, . 黄土塬地震动响应特征分析[J]. 岩土力学, 2020, 41(1): 295-304.
[11] 郭院成, 李明宇, 张艳伟, . 预应力锚杆复合土钉墙支护体系增量解析方法[J]. 岩土力学, 2019, 40(S1): 253-258.
[12] 闫国强, 殷跃平, 黄波林, 张枝华, 代贞伟, . 三峡库区巫山金鸡岭滑坡成因机制与变形特征[J]. 岩土力学, 2019, 40(S1): 329-340.
[13] 刘红岩. 宏细观缺陷对岩体力学特性及边坡稳定影响研究[J]. 岩土力学, 2019, 40(S1): 431-439.
[14] 金爱兵, 刘佳伟, 赵怡晴, 王本鑫, 孙浩, 魏余栋, . 卸荷条件下花岗岩力学特性分析[J]. 岩土力学, 2019, 40(S1): 459-467.
[15] 韩征, 粟滨, 李艳鸽, 王伟, 王卫东, 黄健陵, 陈光齐, . 基于HBP本构模型的泥石流动力过程SPH数值模拟[J]. 岩土力学, 2019, 40(S1): 477-485.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!