岩土力学 ›› 2018, Vol. 39 ›› Issue (S2): 463-472.doi: 10.16285/j.rsm.2018.0957

• 测试技术 • 上一篇    下一篇

单轴压缩条件下岩石孔-隙相互作用机制细观研究

伍天华1,周 喻1,王 莉2,孙金海1,赵 欢2,孙 铮1   

  1. 1. 北京科技大学 金属矿山高效开采与安全教育部重点实验室,北京 100083;2. 中电建路桥集团有限公司,北京 100048
  • 收稿日期:2018-05-31 出版日期:2018-12-21 发布日期:2019-01-06
  • 通讯作者: 周喻,男,1985年生,博士,副教授,主要从事矿山岩石力学及数值计算方面的教学与研究工作。E-mail:westboy85@sina.com E-mail:thwth1212@163.com
  • 作者简介:伍天华,男,1994年生,硕士研究生,主要从事采矿工程灾害方面的研究工作
  • 基金资助:
    国家青年科学基金项目(No.51504016);中央高校基本科研业务费专项项目(No.FRF-BD-17-007A)

Mesoscopic study of interaction mechanism between circular hole and fissures in rock under uniaxial compression

WU Tian-hua1, ZHOU Yu1, WANG Li2, SUN Jin-hai1, ZHAO Huan2, SUN Zheng1   

  1. 1. Key Laboratory of Ministry of Education for Efficient Mining and Safety of Metal Mine, University of Science and Technology Beijing, Beijing 100083, China; 2. PowerChina Road Bridge Group Co., Ltd., Beijing 100048, China 
  • Received:2018-05-31 Online:2018-12-21 Published:2019-01-06
  • Supported by:
    This work was supported by National Natural Science Foundation of China (51504016) and Fundamental Research Funds for the Central Universities (FRF-BD-17- 007A).

摘要: 圆孔和裂隙是岩体内部常见的缺陷形态,其破裂孕育演化机制是岩石力学领域研究的重要课题之一。综合采用数字图像相关技术(DIC)、计算机化X射线轴向分层造影(CT)扫描技术、声发射(AE)监测技术,结合颗粒流PFC2D计算数据,构建含孔-隙的类岩石试样并开展单轴压缩试验,探究孔-隙相互作用下试样强度、变形等力学特征及裂纹孕育演化规律。研究表明,(1)峰前声发射事件数相对较少且均匀,而峰后声发射事件数较多,应力降时刚度绝对值越大,声发射事件频数越大;(2)试样破坏产生的宏观裂纹可分为Ⅰ型裂纹(翼型张拉裂纹)和Ⅱ型裂纹(剪切裂纹)两类,Ⅰ型裂纹首先在裂隙端部和圆孔上下端起裂,沿着平行于加载方向扩展,Ⅱ型裂纹主要在圆孔与裂隙内侧之间的岩桥区域和裂隙外侧与试样边界间的区域产生,且与加载方向呈一定夹角扩展;(3)裂纹扩展路径主要分为翼型张拉裂纹扩展和次生共面裂纹扩展两种,加载前期以翼型张拉裂纹扩展为主,加载后期以次生共面裂纹扩展为主;(4)综合采用DIC技术、CT扫描技术、AE监测技术,结合PFC2D计算方法,建立岩体破坏过程中细观力学机制与宏观力学响应的联系,直观准确地揭示岩体表面及内在裂隙孕育演化规律及分布特征。

关键词: 数字图像相关, CT扫描, 颗粒流程序, 单轴压缩, 裂纹扩展

Abstract: Circular hole and fissure are common flaws in rock mass; and their crack inoculation and evolution mechanisms have become one of the most important research subjects in the field of rock mechanics. Rock-like specimen containing circular hole and fissures are constructed and subjected to uniaxial compression based on digital image correlation(DIC) technology, computed tomography(CT) scanning technology, acoustic emission(AE) monitoring technology and particle flow code in PFC2D calculation data. Under the interaction between circular hole and fissures, the mechanical characteristics such as strength and deformation and fracture development are investigated in detail. Research results show that: (1) the number of acoustic emission events are relatively small and uniform in pre-peak; but the number of acoustic emission events are large in post-peak; and the greater the absolute value of the stiffness at the time of stress drop, the greater the frequency of acoustic emission events. (2) The macroscopic cracks generated by specimen failure can be classified into two modes, namely mode Ⅰ (tensile crack) and mode Ⅱ (shear crack). The mode Ⅰ crack first initiates from the ends of the fissures and the upper and lower of the circular hole, which is approximately parallel to the loading direction. The mode Ⅱ crack, extending at a certain angle with the loading direction, mainly occurs in the rock bridge area between the circular hole and the inner side of the fissures, and the area between the outer side of the fissures and the boundary of the specimen. (3) There are mainly two kinds of crack propagation paths, i.e. airfoil tensile crack propagation and secondary coplanar crack propagation. Among them, the main crack propagation is the airfoil tensile crack in the early loading stage, and the secondary coplanar crack growth is the main one in the late loading stage. (4) The DIC technology, CT scan technology, AE monitoring technology and PFC2D calculation method are adopted synthetically, which can establish the relationship between mesomechanical mechanisms and macromechanical response in the process of rock mass destruction and reveal the development and distribution characteristics of surface and internal fractures in rock masses intuitively and accurately.

Key words: digital image correlation, CT scanning, particle flow code(PFC), uniaxial compression, crack propagation

中图分类号: 

  • TU 452
[1] 张科, 李娜, 陈宇龙, 刘文连, . 裂隙砂岩变形破裂过程中应变场及红外辐射 温度场演化特征研究[J]. 岩土力学, 2020, 41(S1): 95-105.
[2] 张艳博, 吴文瑞, 姚旭龙, 梁鹏, 田宝柱, 黄艳利, 梁精龙, . 单轴压缩下花岗岩声发射、红外特征及 损伤演化试验研究[J]. 岩土力学, 2020, 41(S1): 139-146.
[3] 黄巍, 肖维民, 田梦婷, 张林浩, . 不规则柱状节理岩体力学特性模型试验研究[J]. 岩土力学, 2020, 41(7): 2349-2359.
[4] 潘锐, 程桦, 王雷, 王凤云, 蔡毅, 曹广勇, 张朋, 张皓杰, . 巷道浅层破碎围岩锚注加固承载特性试验研究[J]. 岩土力学, 2020, 41(6): 1887-1898.
[5] 艾迪昊, 李成武, 赵越超, 李光耀, . 煤体静载破坏微震、电磁辐射及裂纹扩展特征研究[J]. 岩土力学, 2020, 41(6): 2043-2051.
[6] 侯志强, 王宇, 刘冬桥, 李长洪, 刘昊. 三轴疲劳-卸围压条件下大理岩力学特性试验研究[J]. 岩土力学, 2020, 41(5): 1510-1520.
[7] 彭家奕, 张家发, 沈振中, 叶加兵, . 颗粒形状对粗粒土孔隙特征和渗透性的影响[J]. 岩土力学, 2020, 41(2): 592-600.
[8] 张国凯, 李海波, 王明洋, 李晓锋, . 基于声学测试和摄像技术的单裂隙岩石 裂纹扩展特征研究[J]. 岩土力学, 2019, 40(S1): 63-72.
[9] 刘希灵, 刘周, 李夕兵, 韩梦思. 单轴压缩与劈裂荷载下灰岩声发射b值特性研究[J]. 岩土力学, 2019, 40(S1): 267-274.
[10] 刘红岩. 宏细观缺陷对岩体力学特性及边坡稳定影响研究[J]. 岩土力学, 2019, 40(S1): 431-439.
[11] 张传庆, 刘振江, 张春生, 周辉, 高阳, 侯靖, . 隐晶质玄武岩破裂演化及破坏特征试验研究[J]. 岩土力学, 2019, 40(7): 2487-2496.
[12] 田军, 卢高明, 冯夏庭, 李元辉, 张希巍. 主要造岩矿物微波敏感性试验研究[J]. 岩土力学, 2019, 40(6): 2066-2074.
[13] 王海军, 郁舒阳, 任然, 汤雷, 李欣昀, 贾宇, . 基于3D-ILC含内裂纹孔口脆性固体断裂特性试验[J]. 岩土力学, 2019, 40(6): 2200-2212.
[14] 杨石扣, 张继勋, 任旭华, . 基于改进数值流形法的接触裂纹问题研究[J]. 岩土力学, 2019, 40(5): 2016-2021.
[15] 张 波, 李 垚, 杨学英, 朱飘扬, 朱春帝, 刘子豪, 刘文杰, 罗志恒, . 一种用于水压致裂试验的水压供给装置研制及应用[J]. 岩土力学, 2019, 40(5): 2022-2028.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!