岩土力学 ›› 2019, Vol. 40 ›› Issue (3): 893-902.doi: 10.16285/j.rsm.2017.1869

• 基础理论与实验研究 • 上一篇    下一篇

不同方向地震激励下软岩桥隧 搭接段动力响应研究

孙广臣1, 2,谢佳佑2,何 山3,傅鹤林1,江学良2,郑 亮1, 4   

  1. 1. 中南大学 土木工程学院,湖南 长沙 410075;2. 中南林业科技大学 土木工程学院,湖南 长沙 410007; 3. 湖南交通职业技术学院 建筑工程学院,湖南 长沙 410004;4. 中南大学 高速铁路建造技术国家工程实验室,湖南 长沙 410075
  • 收稿日期:2017-09-11 出版日期:2019-03-11 发布日期:2019-04-04
  • 作者简介:孙广臣,男,1981年生,博士,副教授,主要从事复杂桥隧结构动力特性与灾变行为的研究工作
  • 基金资助:
    国家自然科学基金项目(No.51408617);中南大学博士后科研启动基金(No.169720);国家自然科学基金项目(No.51578550,No.51204215);中南林业科技大学引进高层次人才科研启动基金项目(No.1040331)。

Dynamic responses of bridge-tunnel approaching parts under different seismic excitation directions in soft surrounding rock

SUN Guang-chen1, 2, XIE Jia-you2, HE Shan3, FU He-lin1, JIANG Xue-liang2, ZHENG Liang1, 4   

  1. 1. School of Civil Engineering, Central South University, Changsha, Hunan 410075, China; 2. College of Civil Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410007, China; 3. College of Architecture Engineering, Hunan Communication Polytechnic, Changsha, Hunan 410004, China; 4. National Engineering Laboratory for Construction Technology of High Speed Railway, Central South University, Changsha, Hunan 410075, China
  • Received:2017-09-11 Online:2019-03-11 Published:2019-04-04
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51408617), the Postdoctoral Research Foundation of Central South University (169720), the National Natural Science Foundation of China (51578550, 51204215) and the Scientific Research Fund of Central South University of Forestry and Technology for Introduction of High-level Talents (1040331).

摘要: 在遭遇强烈地震时,复杂地形和地质条件下高速铁路桥隧搭接段是容易出现严重损伤或破坏的一类复杂连接工程组合体。但是,目前国内外对于统筹考虑桥?隧?岩这一复杂系统内不同结构、部位之间相互作用的在强烈地震作用下的震害机制与动力响应的研究仍不多见。为此,设计并完成了多组基于大型振动台的不同方向地震激励下的模型试验,分析了软岩桥隧搭接段的动力响应特点及激励方向的影响机制。试验结果表明,强烈地震作用对桥?隧?软岩系统的安全与整体稳定非常不利,且隧道洞口及桥梁端部的加速度、位移、应变等地震响应数值大小及变化规律在不同方向地震激励下有显著的差异性。隧道扩大段拱顶和拱脚、标准段拱脚以及桥梁端部、桥台顶部、洞顶土体等部位地震响应较大,应予以加强或特殊处理。研究结果可以为软岩条件下桥隧相连结构抗震设计与地震响应分析提供一定参考。

关键词: 软岩, 桥隧搭接段, 大型振动台, 不同激震方向, 地震响应

Abstract: The high-speed railway bridge and tunnel junction is considered as a complex engineering project. At the event of strong earthquake, serious damage or even completely destruction of this junction would occur under complex topography or poor geological conditions. However, there is limited information on the seismic damage mechanism and dynamic response of interactions between different structures and locations in the complex bridge-tunnel-rock system. Therefore, large-scale shaking table tests were carried out on soft surrounding rock. The seismic dynamic response characteristics of the bridge-tunnel junction and the influence mechanism of the excitation direction were analyzed as well. The experimental results showed that the effect of strong earthquake is detrimental to the safety and stability of the bridge-tunnel-soft rock system. There were significant differences on variation laws of dynamical responses such as the acceleration, displacement and strain parts at the tunnel entrance and the end of the bridge under different earthquake excitations. Relatively large values of seismic responses could occur at the overlapped parts or sections of the bridge-tunnel junction (arch waist and arch foot at lining expansion section, arch foot at the tunnel standard section, the bridge beam end and top of the abutment inside the tunnel portal, and the soil above the cave roof etc.), which required special reinforcement or treatment. The obtained results provide useful references for the further study of structural seismic design and seismic response analysis of bridge-tunnel connecting structures in soft surrounding rock conditions.

Key words: soft rock, bridge-tunnel approaching part, large scale shaking table, different excitation directions, seismic responses

中图分类号: 

  • TU317
[1] 田云, 陈卫忠, 田洪铭, 赵明, 曾春涛. 考虑软岩强度时效弱化的缓冲层让压支护设计研究[J]. 岩土力学, 2020, 41(S1): 237-245.
[2] 乔向进, 梁庆国, 曹小平, 王丽丽, . 桥隧相连体系隧道洞口段动力响应研究[J]. 岩土力学, 2020, 41(7): 2342-2348.
[3] 韩俊艳, 李满君, 钟紫蓝, 许敬叔, 李立云, 兰景岩, 杜修力. 基于埋地管道非一致激励振动台 试验的土层地震响应研究[J]. 岩土力学, 2020, 41(5): 1653-1662.
[4] 张卢明, 周勇, 范刚, 蔡红雨, 董云. 强震作用下核安全级反倾层状软岩高陡边坡组合支挡结构抗震性能研究与加固效果评价[J]. 岩土力学, 2020, 41(5): 1740-1749.
[5] 张雪东, 蔡红, 魏迎奇, 张紫涛, 梁建辉, 胡晶. 基于动力离心试验的软基尾矿库地震响应研究[J]. 岩土力学, 2020, 41(4): 1287-1294.
[6] 雷升祥, 赵伟. 软岩隧道大变形环向让压支护机制研究[J]. 岩土力学, 2020, 41(3): 1039-1047.
[7] 周翠英, 孔令华, 崔光俊, 于磊, 刘镇, . 基于天然红层材料的软岩成型模拟研究[J]. 岩土力学, 2020, 41(2): 419-427.
[8] 周翠英, 梁宁, 刘镇, . 红层软岩压缩破坏的分形特征与级联失效过程[J]. 岩土力学, 2019, 40(S1): 21-31.
[9] 雷江, 陈卫忠, 李翻翻, 于洪丹, 马永尚, 谢华东, 王富刚, . 引红济石引水隧洞围岩力学特性研究[J]. 岩土力学, 2019, 40(9): 3435-3446.
[10] 陈卫忠, 田 云, 王学海, 田洪铭, 曹怀轩, 谢华东, . 基于修正[BQ]值的软岩隧道挤压变形预测[J]. 岩土力学, 2019, 40(8): 3125-3134.
[11] 周翠英, 黄思宇, 刘镇, 陆仪启, . 红层软岩软化的界面过程及其动力学模型[J]. 岩土力学, 2019, 40(8): 3189-3196.
[12] 韩俊艳, 钟紫蓝, 李立云, 赵密, 万宁潭, 杜修力. 纵向非一致激励下自由场土体的非线性 地震反应研究[J]. 岩土力学, 2019, 40(7): 2581-2592.
[13] 储昭飞, 刘保国, 任大瑞, 宋宇, 马强, . 软岩流变相似材料的研制及物理模型试验应用[J]. 岩土力学, 2019, 40(6): 2172-2182.
[14] 杨骐莱, 熊勇林, 张 升, 刘干斌, 郑荣跃, 张 锋, . 考虑温度影响的软岩弹塑性本构模型[J]. 岩土力学, 2019, 40(5): 1898-1906.
[15] 陈卫忠, 李翻翻, 马永尚, 雷 江, 于洪丹, 邢天海, 郑有雷, 贾晓东, . 并联型软岩温度-渗流-应力耦合三轴流变仪的研制[J]. 岩土力学, 2019, 40(3): 1213-1220.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!