岩土力学 ›› 2019, Vol. 40 ›› Issue (3): 1229-1238.doi: 10.16285/j.rsm.2017.2048

• 测试技术 • 上一篇    

基于三维快速扫描算法与到时差数据库技术的层状介质震源定位方法研究

郭 超1,高永涛1,吴顺川1, 2,成子桥3,张诗淮1,韩龙强1   

  1. 1. 北京科技大学 金属矿山高效开采与安全教育部重点实验室,北京 100083;2. 昆明理工大学 国土资源工程学院,云南 昆明 650093; 3. 中电建路桥集团有限公司,北京 100044
  • 收稿日期:2017-09-18 出版日期:2019-03-11 发布日期:2019-04-08
  • 通讯作者: 吴顺川,男,1969年生,博士,教授,主要从事岩土工程、工程力学等方面的研究和教学工作。E-mail: wushunchuan@ustb.edu.cn E-mail:b20160026@xs.ustb.edu.cn
  • 作者简介:郭超,男,1992年生,博士研究生,主要从事岩土工程稳定性监测与评价等方面的研究工作。
  • 基金资助:
    国家自然科学基金项目(No.51774020)

Research of micro-seismic source location method in layered velocity medium based on 3D fast sweeping algorithm and arrival time differences database technique

GUO Chao1, GAO Yong-tao1, WU Shun-chuan1, 2, CHENG Zi-qiao3, ZHANG Shi-huai1, HAN Long-qiang1   

  1. 1. Key Laboratory of Ministry of Education for Efficient Mining and Safety of Metal Mine, University of Science and Technology Beijing, Beijing 100083, China; 2. Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; 3. PowerChina Roadbridge Group Co., Ltd., Beijing 100044, China
  • Received:2017-09-18 Online:2019-03-11 Published:2019-04-08
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51774020).

摘要: 定位算法是微震监测的核心,而速度模型是影响微震定位算法精度的主要因素。快速扫描法(fast sweeping method,FSM)是一种基于复杂速度模型利用求解程函方程(eikonal equation)计算地震波初至到时的算法,已广泛应用于地震定位及地球物理勘探等领域。将该方法引入岩土工程稳定性监测与评价领域,提出一种针对层状速度模型的震源快速定位方法。建立笛卡尔坐标系下三维FSM算法,分别在单一速度模型和水平分层速度模型中采用FSM算法计算点震源初至波走时,与理论解对比分析算法精度及其误差分布特征;进而针对层状速度模型,提出一种基于FSM算法的到时差数据库微地震震源快速定位方法;与基于简化地质模型的传统定位算法进行对比,研究该方法定位精度和计算效率。结果表明,相比较于传统定位方法,提出的基于FSM算法建立的到时差数据库震源定位方法对于层状地质模型微地震事件位置精度具有显著提升,且大大缩减了定位耗时。该算法可为层状地层震源定位、微震监测及室内声发射监测等提供重要的理论和技术支撑。

关键词: 微震定位, 快速扫描法, 到时差, 数据库, 层状速度模型

Abstract: The velocity model is the major factor affecting the seismic source localization algorithm which is the core of microseismic monitoring technique. Based on the complex velocity model, the fast sweeping method (FSM) is an algorithm to calculate the first arrival time of the seismic wave by using the eikonal equation. This method has been widely applied in the fields of earthquake localization and geophysical exploration. In this study, this method was introduced in the field of microseismic monitoring in geotechnical engineering. Especially for layered velocity models, a fast localization technique was established based on the fast sweeping method (FSM). Firstly, the fast sweeping method (FSM) in a 3D Cartesian coordinate system was proposed to calculate the initial travel time of the point source in the single velocity model and horizontal layered velocity model. Compared with the theoretical solution, the accuracy of the algorithm and its error distribution characteristics were analyzed. The travel time results calculated by the fast sweeping method (FSM) and theoretical solutions were compared to analyze the algorithm precision and error distribution characteristics. Secondly, a rapid seismic source localization technique was put forward for the layered velocity model based on the database of the arrival time differences which were calculated by fast sweeping method (FSM). Finally, the positioning accuracy and computational efficiency between the new localization technique and traditional method based on the isotropy velocity model were compared and analyzed. This study showed that the proposed technique for the layered velocity model presented a favorable accuracy and computational efficiency, and also reduced the location time significantly compared with traditional location methods. The technique can provide significant theoretical and technical support for the microseismic source localization in complex layer and acoustic emission monitoring in the laboratory.

Key words: microseismic source location, fast sweeping method, arrival time difference, database, layered velocity model

中图分类号: 

  • P315.73
[1] 蒋若辰, 徐奴文, 戴峰, 周家文. 基于快速行进迎风线性插值的微震定位算法研究[J]. 岩土力学, 2019, 40(9): 3697-3708.
[2] 赵鑫曜, 陈建功, 张海权, 杨泽君, 胡日成, . 基于块石形状数据库的土石混合体模型 随机生成方法[J]. 岩土力学, 2018, 39(12): 4691-4697.
[3] 苏世定,杨仲轩,郭望波. 黏土中打入桩竖向承载力计算方法效果评价[J]. , 2015, 36(S2): 389-393.
[4] 何先龙,赵立珍. 基于多重互相关函数分析剪切波速[J]. , 2010, 31(8): 2541-2545.
[5] 张强勇,陈晓鹏,刘大文,胡建忠,李 杰,蔡德文. 岩土工程监测信息管理与数据分析网络系统开发及应用[J]. , 2009, 30(2): 362-366.
[6] 史秋晶 ,胡伍生 ,刘丹萍 . 工程地质钻孔信息模型及数据库研究[J]. , 2007, 28(4): 758-762.
[7] 朱良峰 , 崔 悦 , 潘 信,. 城市三维地质数据组织与管理方法研究[J]. , 2006, 27(S2): 633-636.
[8] 王 浩 ,李 莉 ,覃卫民 ,汤 华,. ADO在监测信息管理系统开发中的应用[J]. , 2006, 27(S1): 426-429.
[9] 王 浩,吴振君. 水工监测软件开发中数据库和数据结构设计问题[J]. , 2006, 27(5): 823-827.
[10] 朱良峰 ,潘 信 ,吴信才 . 三维地质建模及可视化系统的设计与开发[J]. , 2006, 27(5): 828-832.
[11] 李伟忠 ,艾东海 ,汪新庆 ,田宜平,. 基于GIS和RDB的勘察数据一体化管理[J]. , 2006, 27(10): 1823-1826.
[12] 王 浩 ,吴振君 ,汤 华 ,吴益平 ,葛修润 . 地下厂房监测信息管理、预测系统的设计与应用[J]. , 2006, 27(1): 163-167.
[13] 徐雷云,朱俊高. 基于SQL的土体数据库建立与应用[J]. , 2005, 26(S1): 300-302.
[14] 徐高巍,白世伟,贺怀建. 岩石力学参数数据库系统的开发和研究[J]. , 2005, 26(6): 1005-1008.
[15] 周翠英 ,陈 恒 ,刘祚秋 ,李亚生 ,尚 伟,. 重大工程地下环境信息系统的特点[J]. , 2005, 26(2): 216-220.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!