岩土力学 ›› 2019, Vol. 40 ›› Issue (9): 3635-3644.doi: 10.16285/j.rsm.2018.2286

• 数值分析 • 上一篇    下一篇

高速列车振动荷载作用下马蹄形断面隧 道动力响应特性分析

杨文波,邹涛,涂玖林,谷笑旭,刘雨辰,晏启祥,何川   

  1. 西南交通大学 交通隧道工程教育部重点实验室,四川 成都 610031
  • 收稿日期:2018-12-19 出版日期:2019-09-10 发布日期:2019-09-08
  • 作者简介:杨文波,男,1985年生,博士,副教授,主要从事隧道与地下工程方面的教学和研究工作。
  • 基金资助:
    国家重点研发计划资助(No.2016YFC0802201);国家自然科学基金资助项目(No.51678499)。

Analysis of dynamic response of horseshoe cross-section tunnel under vibrating load induced by high-speed train

YANG Wen-bo, ZOU Tao, TU Jiu-lin, GU Xiao-xu, LIU Yu-chen, YAN Qi-xiang, HE Chuan   

  1. Key Laboratory of Transportation Tunnel Engineering of Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
  • Received:2018-12-19 Online:2019-09-10 Published:2019-09-08
  • Supported by:
    This work was supported by the National Key R & D Program of China(2016YFC0802201) and the National Natural Science Foundation of China(51678499).

摘要: 为了研究马蹄形隧道在高速列车振动荷载作用下的动力响应特性,采用模型试验与数值模拟相结合的方法,以时域、频域分析为基础,采用频率响应函数和峰值振动加速度作为评价指标,分析了列车时速分别为300 km/h和350 km/h的单点振动荷载作用下的隧道结构动力响应规律。通过FLAC3D计算软件建立三维数值模型,研究了高速列车移动荷载作用下隧道结构的动力响应特性。研究结果表明:在列车振动全频域扫频荷载作用下,隧道结构内部的动力响应不是沿隧道环向逐渐衰减,而是仰拱到拱脚处的响应出现一定的衰减,但拱腰到拱顶处却呈现出增大趋势;在40~200 Hz频率范围内,圆形断面隧道结构的动力响应小于马蹄形断面隧道结构的动力响应,平均差值约为3.8 dB,表明隧道的断面形状对其结构的动力响应影响较大,在设计时应予以考虑;在列车移动荷载作用下,各监测点的加速度响应表现出明显的周期效应,列车经过时动力响应显著增大;移动荷载作用下隧道结构的峰值振动加速度较单点振动荷载作用下均有不同程度的增加,因此在研究列车振动荷载诱发的动力响应特性时应考虑列车的移动效应。

关键词: 马蹄形隧道, 高速列车, 振动荷载, 模型试验, FLAC3D, 动力响应

Abstract: In this paper, both physical tests and numerical simulation were conducted to study the dynamic response characteristics of the tunnels with horseshoe cross-section under high-speed train loads. Based on time domain and frequency domain analysis, the frequency response function (FRF) and peak particle acceleration (PPA) are used as evaluation indicators. Under the train vibration loads, the dynamic response of tunnels is analyzed at the speeds of 300 km/h and 350 km/h in the physical tests, respectively. The numerical model is developed by FLAC3D to study the dynamic response of the tunnel under moving loads of high-speed train. Results show that the dynamic response of the tunnel is not attenuated in the circumferential direction as the distance from the vibration source increases. The tunnel response shows a clear attenuation from the inverted arch to the arch. However, there is an increasing trend from the arch to the vault. The test results also show that dynamic response of the horseshoe cross-section tunnel is greater than dynamic response of the circular tunnel, and the average difference is about 3.8 dB in frequency range of 40?200 Hz. It indicates that the tunnel cross-section greatly affects the dynamic response of the tunnel, which should be considered in design. Furthermore, the PPA of the tunnel is the largest at the inverted arch under single-point excitation load. The peak acceleration is the smallest at the tunnel dome. The PPA of the tunnel at monitoring points shows obvious periodic effect under moving train loads of high-speed train. The PPA reaches the highest value when the train travels at the monitoring section. The PPA of the tunnel under moving train loads shows a clear amplification compared with tunnel response under the single-point excitation load. Therefore, it is important to consider the effect of moving trains when studying the tunnel dynamic behaviour under train induced vibration loads.

Key words: horseshoe cross-section tunnel, high-speed train, vibration load, physical test, FLAC3D, dynamic response

中图分类号: 

  • TU435
[1] 徐刚, 张春会, 于永江, . 综放工作面覆岩破断和压架的试验研究及预测模型[J]. 岩土力学, 2020, 41(S1): 106-114.
[2] 张磊, 海维深, 甘浩, 曹卫平, 王铁行, . 水平与上拔组合荷载下柔性单桩 承载特性试验研究[J]. 岩土力学, 2020, 41(7): 2261-2270.
[3] 乔向进, 梁庆国, 曹小平, 王丽丽, . 桥隧相连体系隧道洞口段动力响应研究[J]. 岩土力学, 2020, 41(7): 2342-2348.
[4] 黄巍, 肖维民, 田梦婷, 张林浩, . 不规则柱状节理岩体力学特性模型试验研究[J]. 岩土力学, 2020, 41(7): 2349-2359.
[5] 何静斌, 冯忠居, 董芸秀, 胡海波, 刘 闯, 郭穗柱, 张聪, 武敏, 王振, . 强震区桩−土−断层耦合作用下桩基动力响应[J]. 岩土力学, 2020, 41(7): 2389-2400.
[6] 邹新军, 曹雄, 周长林, . 砂土地基中受水流影响的竖向力−水平力联合 受荷桩承载特性模型试验研究[J]. 岩土力学, 2020, 41(6): 1855-1864.
[7] 程永辉, 胡胜刚, 王汉武, 张成. 深埋砂层旁压特征参数的深度效应研究[J]. 岩土力学, 2020, 41(6): 1881-1886.
[8] 史林肯, 周辉, 宋明, 卢景景, 张传庆, 路新景, . 深部复合地层TBM开挖扰动模型试验研究[J]. 岩土力学, 2020, 41(6): 1933-1943.
[9] 宁奕冰, 唐辉明, 张勃成, 申培武, 章广成, 夏丁, . 基于正交设计的岩石相似材料配比研究及 底摩擦物理模型试验应用[J]. 岩土力学, 2020, 41(6): 2009-2020.
[10] 蒲诃夫, 潘友富, KHOTEJA Dibangar, 周洋. 絮凝-水平真空两段式脱水法处理高 含水率疏浚淤泥模型试验研究[J]. 岩土力学, 2020, 41(5): 1502-1509.
[11] 任洋, 李天斌, 赖林. 强震区隧道洞口段边坡动力响应 特征离心振动台试验[J]. 岩土力学, 2020, 41(5): 1605-1612.
[12] 张卢明, 周勇, 范刚, 蔡红雨, 董云. 强震作用下核安全级反倾层状软岩高陡边坡组合支挡结构抗震性能研究与加固效果评价[J]. 岩土力学, 2020, 41(5): 1740-1749.
[13] 王立安, 赵建昌, 侯小强, 刘生纬, 王作伟. 非均匀饱和半空间的Lamb问题[J]. 岩土力学, 2020, 41(5): 1790-1798.
[14] 刘功勋, 李威, 洪国军, 张坤勇, CHEN Xiu-han, 施绍刚, RUTTEN Tom. 大比尺切削模型试验条件下砂岩破坏特征研究[J]. 岩土力学, 2020, 41(4): 1211-1218.
[15] 冯立, 丁选明, 王成龙, 陈志雄. 考虑接缝影响的地下综合管廊振动台模型试验[J]. 岩土力学, 2020, 41(4): 1295-1304.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!