岩土力学 ›› 2021, Vol. 42 ›› Issue (10): 2683-2695.doi: 10.16285/j.rsm.2021.0012

• 基础理论与实验研究 • 上一篇    下一篇

红砂岩蠕变破坏声发射震源演化及其分形特征

龚囱1, 2,赵坤1,包涵1,赵奎1,曾鹏1,王文杰1   

  1. 1. 江西理工大学 资源与环境工程学院,江西 赣州 341000;2. 北京科技大学 金属矿山高效开采与安全教育部重点实验室,北京 100083
  • 收稿日期:2021-01-05 修回日期:2021-06-24 出版日期:2021-10-11 发布日期:2021-10-18
  • 通讯作者: 赵奎,男,1969 年生,博士,教授,博士生导师,主要从事岩石力学与工程方面的研究工作。E-mail: yglmf_zk@163.com E-mail:gongcong041@163.com
  • 作者简介:龚囱,男,1985年生,博士,副教授,硕士生导师,主要从事岩石力学与工程方面的研究工作。
  • 基金资助:
    国家自然科学基金(No. 51704128);中国博士后科学基金(No.2020M671976);金属矿山高效开采与安全教育部重点实验室开放基金(No.ustbmslab201903);江西理工大学清江青年英才支持计划(No. JXUSTQJYX2019005)。

Acoustic emission source evolution and fractal features during creep failure of red sandstone

GONG Cong1, 2, ZHAO Kun1, BAO Han1, ZHAO Kui1, ZENG Peng1, WANG Wen-jie1   

  1. 1. School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341000, China; 2. Key Laboratory of Ministry of Education for Efficient Mining and Safety of Metal Mine, University of Science and Technology Beijing, Beijing 100083, China
  • Received:2021-01-05 Revised:2021-06-24 Online:2021-10-11 Published:2021-10-18
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51704128), the China Postdoctoral Science Foundation (2020M671976), the Open Foundation from Key Laboratory of Ministry of Education for Efficient Mining and Safety of Metal Mines (ustbmslab201903) and the Program for Excellent Young Talents of JXUST (JXUSTQJYX2019005).

摘要: 对红砂岩进行了蠕变声发射定位试验,分析了声发射震源在沿加载方向与垂直于加载方向上的演化规律。在此基础上,以固定的时间窗口和时间步距,计算并研究了震源zi值与ri值的分形维数特征。试验结果表明:当蠕变应力等于或大于损伤应力时,声发射震源时空演化规律反映的是微裂纹萌生、成核与扩展、贯通的过程。微裂纹的萌生主要产生于减速蠕变阶段,在此过程中微裂纹在沿加载方向与垂直加载方向上,表现为自试件端部与外壁向试件中心演化的过程,并且zi值与ri值的分形维数总体呈现减小的特征。微裂纹的成核过程出现在等速蠕变阶段,其位置位于试件的中心部位。而后,随着蠕变时间的增大,微裂纹步入扩展阶段,此时微裂纹演化表现为自试件中心向端部与外壁方向扩展的过程。对应的zi值与ri值的分形维数均处于较低水平,该特征可作为微裂纹步入成核与扩展过程的标志。微裂纹的贯通产生于加速蠕变阶段,在此过程中沿加载方向上微裂纹主要分布于试件轴向中上部与中下部,而在垂直加载方向上微裂纹遍布试件半径方向,但震源zi值与ri值的分形维数均随着蠕变时间的增大而小幅度上升,该特征可作为微裂纹步入贯通过程的标志。该研究结果可为探索岩石蠕变细观机制与蠕变破坏预测方法提供理论与试验支撑。

关键词: 红砂岩, 蠕变, 损伤强度, 声发射震源, 分形维数

Abstract: The creep acoustic emission (AE) location tests of red sandstone were carried out, and the evolution of AE source along loading direction and perpendicular to loading direction was analyzed. On this basis, the fractal characteristics of source zi value and ri value were studied with fixed time window and time step. The results show that when the creep stress is equal to or greater than the damage stress, the spatio-temporal evolution law of AE source reflects the process of micro-cracks initiation, nucleation, expansion and coalescence. The initiation of micro-cracks mainly occurs in the stage of decelerating creep. During this process, the micro-cracks evolve from the end surfaces and the outer wall to the center of the specimen along the loading direction and the vertical loading direction, and the fractal dimension of zi values and ri values generally decrease. The nucleation process of the micro-cracks appears in the stage of steady creep, and nucleation area locates in the center of the specimen. Then, with the increase of the creep time, the micro-cracks step into the expansion stage, in which the evolution of the micro-cracks is manifested as the expansion process from the center of the specimen to the direction of the end surface and the outer wall, and the fractal dimensions of the corresponding zi values and ri values are at low levels, which can be used as a marker for the process of micro-cracks nucleation and expansion. The coalescence of micro-cracks occurs in the accelerated creep stage. During this process, the micro-cracks are mainly distributed in the axial upper and lower part of the specimen along the loading direction, while in the vertical loading direction, the micro-cracks are distributed all over the radius of the specimen. However, the fractal dimension of source zi value and ri value both increase slightly with the increase of creep time, which can be used as a symbol of micro-cracks coalescing process. The findings in study can provide theoretical and experimental support for exploring rock creep micro-mechanism and creep failure prediction method.

Key words: red sandstone, creep, damage strength, acoustic emission source, fractal dimension

中图分类号: 

  • TU 45
[1] 王兴开, 夏才初, 朱哲明, 谢文兵, 宋磊博, 韩观胜, . 单级荷载下极软煤岩长期蠕变规律及本构模型研究[J]. 岩土力学, 2021, 42(8): 2078-2088.
[2] 冯忠居, 江冠, 赵瑞欣, 龙厚胜, 王政斌, 张正旭, . 基于多因素耦合效应的锚索预应力长期损失研究[J]. 岩土力学, 2021, 42(8): 2215-2224.
[3] 李福林, 杨健, 刘卫群, 范振华, 杨玉贵, . 单轴压缩条件下泥岩加载速率变化效应研究[J]. 岩土力学, 2021, 42(2): 369-378.
[4] 周哲, 陈善雄, 戴张俊, 黄康, 余飞, . 基于点荷载试验的新生代红砂岩 强度软化规律研究[J]. 岩土力学, 2021, 42(11): 2997-3007.
[5] 邹先坚, 王益腾, 王川婴. 钻孔图像中岩石结构面三维形貌特征及 优势抗滑方向研究[J]. 岩土力学, 2020, 41(S1): 290-298.
[6] 张峰瑞, 姜谙男, 杨秀荣. 孔隙水压力对锯齿状结构面剪切蠕变特性的影响[J]. 岩土力学, 2020, 41(9): 2901-2912.
[7] 李列列, 管俊峰, 肖明砾, 刘海朝, 唐克东, . 一种横观各向同性岩体蠕变模型[J]. 岩土力学, 2020, 41(9): 2922-2930.
[8] 孟敏强, 王磊, 蒋翔, 汪成贵, 刘汉龙, 肖杨, . 基于尺寸效应的粗粒土单颗粒破碎试验及数值模拟[J]. 岩土力学, 2020, 41(9): 2953-2962.
[9] 吝曼卿, 张兰, 刘夕奇, 夏元友, 张电吉, 彭亚利, . 梯度应力作用下模型试件的岩爆破坏细观分析[J]. 岩土力学, 2020, 41(9): 2984-2992.
[10] 刘家顺, 靖洪文, 孟波, 王来贵, 张向东, 杨建军, . 含水条件下弱胶结软岩蠕变特性 及分数阶蠕变模型研究[J]. 岩土力学, 2020, 41(8): 2609-2618.
[11] 魏尧, 杨更社, 申艳军, 明锋, 梁博, . 白垩系饱和冻结砂岩蠕变试验及本构模型研究[J]. 岩土力学, 2020, 41(8): 2636-2646.
[12] 庄心善, 赵汉文, 王俊翔, 黄勇杰, 胡智. 循环荷载下重塑弱膨胀土滞回曲线 形态特征定量研究[J]. 岩土力学, 2020, 41(6): 1845-1854.
[13] 褚福永, 朱俊高, 翁厚洋, 叶洋帆. 粗粒料级配缩尺后最大干密度试验研究[J]. 岩土力学, 2020, 41(5): 1599-1604.
[14] 陈琼, 崔德山, 王菁莪, 刘清秉. 不同固结状态下黄土坡滑坡滑 带土的蠕变试验研究[J]. 岩土力学, 2020, 41(5): 1635-1642.
[15] 徐毅青, 邓绍玉, 葛琦. 锚索预应力初期与长期损失的预测模型研究[J]. 岩土力学, 2020, 41(5): 1663-1669.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 孙树林,李 方,谌 军. 掺石灰黏土电阻率试验研究[J]. , 2010, 31(1): 51 -55 .
[2] 李英勇,张顶立,张宏博,宋修广. 边坡加固中预应力锚索失效机制与失效效应研究[J]. , 2010, 31(1): 144 -150 .
[3] 李 晶,缪林昌,钟建驰,冯兆祥. EPS颗粒混合轻质土反复荷载下变形和阻尼特性[J]. , 2010, 31(6): 1769 -1775 .
[4] 王丽艳,姜朋明,刘汉龙. 砂性地基中防波堤地震残余变形机制分析与液化度预测法[J]. , 2010, 31(11): 3556 -3562 .
[5] 李秀珍,王成华,邓宏艳. DDA法和Fisher判别法在潜在滑坡判识中的应用比较[J]. , 2011, 32(1): 186 -192 .
[6] 吉武军. 黄土隧道工程问题调查分析[J]. , 2009, 30(S2): 387 -390 .
[7] 陈力华 ,林 志 ,李星平. 公路隧道中系统锚杆的功效研究[J]. , 2011, 32(6): 1843 -1848 .
[8] 陈立文,孙德安. 不同应力路径下水土耦合超固结黏土分叉分析[J]. , 2011, 32(10): 2922 -2928 .
[9] 郑 刚 张立明 刁 钰. 开挖条件下坑底工程桩工作性状及沉降计算分析[J]. , 2011, 32(10): 3089 -3096 .
[10] 赵明华,雷 勇,张 锐. 岩溶区桩基冲切破坏模式及安全厚度研究[J]. , 2012, 33(2): 524 -530 .