岩土力学 ›› 2022, Vol. 43 ›› Issue (4): 1083-1092.doi: 10.16285/j.rsm.2021.1138
乔亚飞1, 2,唐洁1, 2,顾贇3,丁文其1, 2
QIAO Ya-fei1, 2, TANG Jie1, 2, GU Yun3, DING Wen-qi1, 2
摘要: 地连墙施工扰动的精细分析对预测基坑开挖的环境影响十分重要,尤其是超深基坑。因此,收集分析了某102 m超深地连墙施工过程中的泥浆压力和混凝土压力现场实测数据,总结了槽壁侧压力的演变规律和竖向分布模式,提出了混凝土浇筑过程中槽壁侧压力的三折线模型并验证。三折线模型可以再现槽壁侧压力先增大后减小的趋势,并可退化为双折线模型。最后采用三折线模型建立了精细化数值模型,模拟了百米地连墙的成槽开挖及混凝土浇筑过程,分析了连续墙施工对槽段周围土体应力与变形的影响,并将计算结果与双折线模型结果进行了对比。结果表明:超深地下连续墙施工会引起周围土体的应力重分布,其影响范围在沿槽段方向为1.6倍槽段长度,在垂直槽段方向为4.3倍槽段长度;土体应力重分布有沿竖向和水平向传递两种机制,且以水平向传递为主。在上海软土地区,地下连续墙混凝土的浇筑会对槽壁产生挤压作用,引起槽段体积增大,进而导致混凝土浇筑量的增大。
中图分类号:
[1] | 汪嘉钰, 刘润, 姬永红, 杨旭, 陈广思, 王晓磊, . 筒型基础水平向和抗倾承载力的极限分析上限解[J]. 岩土力学, 2022, 43(3): 777-788. |
[2] | 江帅, 朱勇, 栗青, 周辉, 涂洪亮, 杨凡杰, . 隧道开挖地表沉降动态预测及影响因素分析[J]. 岩土力学, 2022, 43(1): 195-204. |
[3] | 蔡灿, 张沛, 孙明光, 杨迎新, 谢松, 蒲治成, 杨显鹏, 高超, 谭政博, . 油气钻井中的分离式冲击−切削复合破岩机制研究[J]. 岩土力学, 2021, 42(9): 2535-2544. |
[4] | 张建聪, 江权, 郝宪杰, 丰光亮, 李邵军, 汪志林, 樊启祥, . 高应力下柱状节理玄武岩应力−结 构型塌方机制分析[J]. 岩土力学, 2021, 42(9): 2556-2568. |
[5] | 赵志强, 戴福初, 闵弘, 谭晔, . 原状黄土−古土壤中水分入渗过程研究[J]. 岩土力学, 2021, 42(9): 2611-2621. |
[6] | 庄妍, 李劭邦, 崔晓艳, 董晓强, 王康宇, . 高铁荷载下桩承式路基动力响应及土拱效应研究[J]. 岩土力学, 2020, 41(9): 3119-3130. |
[7] | 盛建龙, 韩云飞, 叶祖洋, 程爱平, 黄诗冰, . 粗糙裂隙水、气两相流相对渗透系数模型与数值分析[J]. 岩土力学, 2020, 41(3): 1048-1055. |
[8] | 章定文, 刘志祥, 沈国根, 鄂俊宇, . 超大直径浅埋盾构隧道土压力实测分析 及其计算方法适用性评价[J]. 岩土力学, 2019, 40(S1): 91-98. |
[9] | 朱才辉, 崔 晨, 兰开江, 东永强. 砖-土结构劣化及入侵建筑物拆除 对榆林卫城稳定性影响[J]. 岩土力学, 2019, 40(8): 3153-3166. |
[10] | 李 宁, 杨 敏, 李国锋. 再论岩土工程有限元方法的应用问题[J]. 岩土力学, 2019, 40(3): 1140-1148. |
[11] | 郑黎明, 张洋洋, 李子丰, 马平华, 阳鑫军, . 低频波动下考虑孔隙度与压力不同程度变 化的岩土固结渗流分析[J]. 岩土力学, 2019, 40(3): 1158-1168. |
[12] | 崔春义, 孟 坤, 武亚军, 马科研, 梁志孟, . 轴对称径向非均质土中单桩纵向振动特性研究[J]. 岩土力学, 2019, 40(2): 570-579. |
[13] | 王建军, 陈福全, 李大勇. 低填方加筋路基沉降的Kerr模型解[J]. 岩土力学, 2019, 40(1): 250-259. |
[14] | 何海杰, 兰吉武, 高 武, 陈云敏, 马鹏程, 肖电坤, . 压缩空气排水井在填埋场滑移控制中的应用及分析[J]. 岩土力学, 2019, 40(1): 343-350. |
[15] | 董志宏, 丁秀丽, 黄书岭, 邬爱清, 陈胜宏, 周 钟, . 高地应力区大型洞室锚索时效受力特征 及长期承载风险分析[J]. 岩土力学, 2019, 40(1): 351-362. |
|