岩土力学 ›› 2022, Vol. 43 ›› Issue (S1): 312-320.doi: 10.16285/j.rsm.2020.1353
申嘉伟1,周博1,付茹2,库泉3,汪华斌1
SHEN Jia-wei1, ZHOU Bo1, FU Ru2, KU Quan1, WANG Hua-bin1
摘要: 通过自动单轴加载系统对不同粒径和形状的钙质砂颗粒进行了单颗粒压碎试验,同时借助于显微探头观测记录钙质砂颗粒的压碎过程和破碎模式,并利用统计方法分析粒径、形状和干湿条件等因素对钙质砂颗粒破碎强度和破碎模式的影响。此外,通过原位X射线μCT扫描支持下的微型单轴加载装置分别对两个钙质砂颗粒的压碎过程进行了高精度扫描,利用图像处理和分析技术对内孔隙结构的影响进行了深入研究。结果表明:形状类似时,钙质砂颗粒的粒径越大,特征强度越低;粒径相当时,块状颗粒的特征强度最大,片状颗粒次之,刃状颗粒再次之,条状颗粒最小;钙质砂颗粒的破碎过程可以归纳为3种裂纹形式和3种破碎模式,分别为单裂纹、交叉裂纹、拱裂纹和模式I、II、III。μCT图像分析结果表明,颗粒破碎产生的裂纹主要集中于内孔隙较密集处。这说明内孔隙结构对于钙质砂颗粒的破碎行为具有重要的影响。
中图分类号:
[1] | 曾召田, 梁珍, 孙凌云, 付慧丽, 范理云, 潘斌, 于海浩, . 水泥胶结钙质砂导热系数的影响因素试验研究[J]. 岩土力学, 2022, 43(S1): 88-96. |
[2] | 高敏, 何绍衡, 夏唐代, 丁智, 王新刚, 张琼方, . 复杂应力路径下钙质砂颗粒破碎及抗剪强度特性[J]. 岩土力学, 2022, 43(S1): 321-330. |
[3] | 覃东来, 孟庆山, 阎钶, 覃庆龙, 黄孝芳, 饶佩森, . 钙质砂砾剪切强度及变形的粒径效应试验研究[J]. 岩土力学, 2022, 43(S1): 331-338. |
[4] | 张小燕, 张益, 张晋勋, 魏凯园, 王宁, . 含橡胶纤维钙质砂的渗透和固结特性试验研究[J]. 岩土力学, 2022, 43(8): 2115-2122. |
[5] | 柴源, 牛勇, 吕海波, . 水泥胶结钙质砂地层中单桩竖向承载特性试验研究[J]. 岩土力学, 2022, 43(8): 2203-2212. |
[6] | 王嘉璐, 张升, 童晨曦, 戴邵衡, 黎章. 基于染色标定的钙质砂颗粒破碎级配 转移矩阵试验研究[J]. 岩土力学, 2022, 43(8): 2222-2232. |
[7] | 陈宾, 邓坚, 胡杰铭, 张建林, 张涛, . 钙质砂一维蠕变分形破碎特性宏微观试验研究[J]. 岩土力学, 2022, 43(7): 1781-1790. |
[8] | 胡聪, 龙志林, 旷杜敏, 龚钊卯, 俞飘旖, 徐国斌. 基于多视角二维图像的钙质砂颗粒三维重构方法[J]. 岩土力学, 2022, 43(3): 761-768. |
[9] | 肖瑶, 邓华锋, 李建林, 程雷, 朱文羲. 海水环境下巴氏芽孢杆菌驯化 及钙质砂固化效果研究[J]. 岩土力学, 2022, 43(2): 395-404. |
[10] | 万志辉, 戴国亮, 龚维明, 高鲁超, . 海水环境下钙质砂水泥土加固体的 微观侵蚀机制试验研究[J]. 岩土力学, 2021, 42(7): 1871-1882. |
[11] | 蒋浩鹏, 姜谙男, 杨秀荣. 基于Weibull分布的高温岩石统计损伤 本构模型及其验证[J]. 岩土力学, 2021, 42(7): 1894-1902. |
[12] | 饶佩森, 李丹, 孟庆山, 王新志, 付金鑫, 雷学文, . 循环荷载作用下钙质砂地基土压力分布特征研究[J]. 岩土力学, 2021, 42(6): 1579-1586. |
[13] | 鞠远江, 胡明鉴, 秦坤坤, 宋博, 孙子晨, . 珊瑚礁岛钙质砂细颗粒渗透运移规律研究[J]. 岩土力学, 2021, 42(5): 1245-1253. |
[14] | 董博文, 刘士雨, 俞缙, 肖杨, 蔡燕燕, 涂兵雄. 基于微生物诱导碳酸钙沉淀的天然海水 加固钙质砂效果评价[J]. 岩土力学, 2021, 42(4): 1104-1114. |
[15] | 万志辉, 戴国亮, 龚维明, 高鲁超, 徐艺飞, . 钙质砂后压浆桩水平承载性状模型试验研究[J]. 岩土力学, 2021, 42(2): 411-418. |
|