岩土力学 ›› 2022, Vol. 43 ›› Issue (S1): 312-320.doi: 10.16285/j.rsm.2020.1353

• 基础理论与实验研究 • 上一篇    下一篇

钙质砂单颗粒破碎强度和模式的试验研究

申嘉伟1,周博1,付茹2,库泉3,汪华斌1   

  1. 1. 华中科技大学 土木与水利工程学院,湖北 武汉 430074;2. 中国地质大学(武汉) 工程学院,湖北 武汉 430074; 3. 香港科技大学 土木及环境工程学系,香港
  • 收稿日期:2020-09-08 修回日期:2021-03-16 出版日期:2022-06-30 发布日期:2022-07-14
  • 通讯作者: 周博,男,1987年生,博士,副教授,主要从事岩土散体介质材料宏微观力学行为的试验与模拟研究。E-mail: zhoubohust@hust.edu.cn E-mail: shenjiawei@hust.edu.cn
  • 作者简介:申嘉伟,男,1996年生,博士研究生,主要从事砂土颗粒细观力学方面的研究。
  • 基金资助:
    国家自然科学基金项目(No.41877233,No.42072298,No.41931286)。

Experimental study on single particle crushing strength and patterns of calcareous sand

SHEN Jia-wei1, ZHOU Bo1, FU Ru2, KU Quan1, WANG Hua-bin1   

  1. 1. School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; 2. Faculty of Engineering, China University of Geosciences(Wuhan), Wuhan, Hubei 430074, China; 3. Department of Civil and Environmental Engineering, HongKong University of Science and Technology, Hong Kong, China
  • Received:2020-09-08 Revised:2021-03-16 Online:2022-06-30 Published:2022-07-14
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(41877233, 42072298, 41931286).

摘要: 通过自动单轴加载系统对不同粒径和形状的钙质砂颗粒进行了单颗粒压碎试验,同时借助于显微探头观测记录钙质砂颗粒的压碎过程和破碎模式,并利用统计方法分析粒径、形状和干湿条件等因素对钙质砂颗粒破碎强度和破碎模式的影响。此外,通过原位X射线μCT扫描支持下的微型单轴加载装置分别对两个钙质砂颗粒的压碎过程进行了高精度扫描,利用图像处理和分析技术对内孔隙结构的影响进行了深入研究。结果表明:形状类似时,钙质砂颗粒的粒径越大,特征强度越低;粒径相当时,块状颗粒的特征强度最大,片状颗粒次之,刃状颗粒再次之,条状颗粒最小;钙质砂颗粒的破碎过程可以归纳为3种裂纹形式和3种破碎模式,分别为单裂纹、交叉裂纹、拱裂纹和模式I、II、III。μCT图像分析结果表明,颗粒破碎产生的裂纹主要集中于内孔隙较密集处。这说明内孔隙结构对于钙质砂颗粒的破碎行为具有重要的影响。

关键词: 钙质砂, 单颗粒压碎, Weibull分布, μCT扫描, 内孔隙

Abstract: Analysis of the effects of sizes, shapes and wetting condition on crushing strength and modes of calcareous sand can be accomplished using a statistical method by subjecting particles with different sizes and shapes to single particle crushing tests through automatically uniaxial loading system and the crushing process, and modes of particles were observed and recorded with the help of microscopic probe. In addition, the micro-uniaxial loading device supported by in-situ X-ray μCT scan was used to scan the crushing process of two calcareous sand particles with high precision, and the effects of internal pore structure were deeply investigated by image processing and analysis technology. The results show that the characteristic strength of calcareous sand particles is decreased with increasing sizes. While for the particles with similar sizes, the characteristic strength of compact particles is the largest, followed by platy particles and bladed particles, and elongated particles are the least. The crushing process of calcareous sand particles can be summarized as three crack forms and three fracture patterns, which are single crack, cross crack, arch crack and patterns I, II, III, respectively. Finally, analysis results of μCT images show that the cracks caused by particle crushing concentrated mainly in the dense internal pores, which indicated that internal pore structure has an important influence on the crushing behavior of calcareous sand particle.

Key words: calcareous sand, single particle crushing, Weibull distribution, μCT scan, internal pore

中图分类号: 

  • TU411
[1] 曾召田, 梁珍, 孙凌云, 付慧丽, 范理云, 潘斌, 于海浩, . 水泥胶结钙质砂导热系数的影响因素试验研究[J]. 岩土力学, 2022, 43(S1): 88-96.
[2] 高敏, 何绍衡, 夏唐代, 丁智, 王新刚, 张琼方, . 复杂应力路径下钙质砂颗粒破碎及抗剪强度特性[J]. 岩土力学, 2022, 43(S1): 321-330.
[3] 覃东来, 孟庆山, 阎钶, 覃庆龙, 黄孝芳, 饶佩森, . 钙质砂砾剪切强度及变形的粒径效应试验研究[J]. 岩土力学, 2022, 43(S1): 331-338.
[4] 张小燕, 张益, 张晋勋, 魏凯园, 王宁, . 含橡胶纤维钙质砂的渗透和固结特性试验研究[J]. 岩土力学, 2022, 43(8): 2115-2122.
[5] 柴源, 牛勇, 吕海波, . 水泥胶结钙质砂地层中单桩竖向承载特性试验研究[J]. 岩土力学, 2022, 43(8): 2203-2212.
[6] 王嘉璐, 张升, 童晨曦, 戴邵衡, 黎章. 基于染色标定的钙质砂颗粒破碎级配 转移矩阵试验研究[J]. 岩土力学, 2022, 43(8): 2222-2232.
[7] 陈宾, 邓坚, 胡杰铭, 张建林, 张涛, . 钙质砂一维蠕变分形破碎特性宏微观试验研究[J]. 岩土力学, 2022, 43(7): 1781-1790.
[8] 胡聪, 龙志林, 旷杜敏, 龚钊卯, 俞飘旖, 徐国斌. 基于多视角二维图像的钙质砂颗粒三维重构方法[J]. 岩土力学, 2022, 43(3): 761-768.
[9] 肖瑶, 邓华锋, 李建林, 程雷, 朱文羲. 海水环境下巴氏芽孢杆菌驯化 及钙质砂固化效果研究[J]. 岩土力学, 2022, 43(2): 395-404.
[10] 万志辉, 戴国亮, 龚维明, 高鲁超, . 海水环境下钙质砂水泥土加固体的 微观侵蚀机制试验研究[J]. 岩土力学, 2021, 42(7): 1871-1882.
[11] 蒋浩鹏, 姜谙男, 杨秀荣. 基于Weibull分布的高温岩石统计损伤 本构模型及其验证[J]. 岩土力学, 2021, 42(7): 1894-1902.
[12] 饶佩森, 李丹, 孟庆山, 王新志, 付金鑫, 雷学文, . 循环荷载作用下钙质砂地基土压力分布特征研究[J]. 岩土力学, 2021, 42(6): 1579-1586.
[13] 鞠远江, 胡明鉴, 秦坤坤, 宋博, 孙子晨, . 珊瑚礁岛钙质砂细颗粒渗透运移规律研究[J]. 岩土力学, 2021, 42(5): 1245-1253.
[14] 董博文, 刘士雨, 俞缙, 肖杨, 蔡燕燕, 涂兵雄. 基于微生物诱导碳酸钙沉淀的天然海水 加固钙质砂效果评价[J]. 岩土力学, 2021, 42(4): 1104-1114.
[15] 万志辉, 戴国亮, 龚维明, 高鲁超, 徐艺飞, . 钙质砂后压浆桩水平承载性状模型试验研究[J]. 岩土力学, 2021, 42(2): 411-418.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .