岩土力学 ›› 2022, Vol. 43 ›› Issue (S1): 601-612.doi: 10.16285/j.rsm.2021.0247

• 数值分析 • 上一篇    下一篇

基于粒子群−变分模态分解、非线性自回归神经网络与门控循环单元的滑坡位移动态预测模型研究

姜宇航1, 2,王伟1, 2,邹丽芳3,王如宾1, 2,刘世藩1, 2,段雪雷1, 2   

  1. 1. 河海大学 岩土力学与堤坝工程教育部重点实验室,江苏 南京 210098;2. 河海大学 江苏省岩土工程技术工程研究中心,江苏 南京 210098;3. 河海大学 地球科学与工程学院,江苏 南京 211100
  • 收稿日期:2021-02-09 修回日期:2021-04-10 出版日期:2022-06-30 发布日期:2022-07-15
  • 通讯作者: 王伟,男,1978年生,博士,教授,博士生导师,主要从事岩土工程防灾减灾和岩石力学方面的研究。E-mail: wwang@hhu.edu.cn E-mail:yh_jiang01@126.com
  • 作者简介:姜宇航,男,1996年生,博士研究生,主要从事滑坡监测、预测以及风险评估等方面的研究。
  • 基金资助:
    国家重点研发计划项目(No.2017YFC1501100);江苏高校“青蓝工程”项目;江苏省六大高峰人才项目。

Research on dynamic prediction model of landslide displacement based on particle swarm optimization-variational mode decomposition, nonlinear autoregressive neural network with exogenous inputs and gated recurrent unit

JIANG Yu-hang1, 2, WANG Wei1, 2, ZOU Li-fang3, WANG Ru-bin1, 2, LIU Shi-fan1, 2, DUAN Xue-lei1, 2   

  1. 1. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing, Jiangsu 210098, China; 2. Jiangsu Research Center for Geomechanical Engineering Technology, Hohai University, Nanjing, Jiangsu 210098, China; 3. School of Earth Science and Engineering, Hohai University, Nanjing, Jiangsu 211100, China
  • Received:2021-02-09 Revised:2021-04-10 Online:2022-06-30 Published:2022-07-15
  • Supported by:
    This work was supported by the National Key Research and Development Program of China(2017YFC1501100), the Program to Cultivate Middle-aged and Young Science Leaders of Colleges and Universities of Jiangsu Province and the Program to Six Peak Talent Projects in Jiangsu Province.

摘要: 以三峡库区八字门阶跃型滑坡为例,针对静态机器学习模型在周期项位移预测中的不足以及高频随机项位移预测困难等问题,提出了一种新的滑坡位移预测方法。基于时间序列分解思想,采用粒子群算法(PSO)对变分模态分解(VMD)进行参数寻优,并将位移时间序列分解为趋势项、周期项和随机项。趋势项主要受滑坡内部因素影响,采用傅里叶曲线进行拟合预测;周期项由外部因素导致,基于格兰杰因果检验进行成因分析,并引入一种对时间序列历史状态具有较高敏感性的非线性自回归神经网络(NARX)进行预测;随机项频率较高且影响因素无法判定,采用一维门控循环单元(GRU)进行预测。最后将各分量预测位移进行叠加重构,实现滑坡累计位移的预测。结果表明,提出的(PSO-VMD)-NARX-GRU滑坡位移动态预测模型精度较高,且各位移分量预测精度明显高于静态模型中BP神经网络、支持向量机(SVM)和传统自回归模型ARIMA,可为阶跃型滑坡位移预测提供参考。

关键词: 滑坡位移预测, 粒子群算法, 变分模态分解, 格兰杰因果检验, 非线性自回归神经网络, 门控循环单元

Abstract: Taking the Bazimen landslide in the Three Gorges reservoir area as an example, a new landslide displacement prediction method is proposed to solve the problems of the static machine learning model in the periodic displacement prediction and the difficulty in the high-frequency random displacement prediction. Based on the idea of time series decomposition, particle swarm optimization (PSO) is used to optimize the parameters of variational mode decomposition (VMD), and the displacement time series is decomposed into trend term, periodic term and random term. The trend term is mainly affected by the internal factors of landslide, and the Fourier curve is used to fit and predict. The periodic term is caused by external factors. The causes are analyzed based on Granger causality test, and a nonlinear autoregressive neural network with exogenous inputs (NARX) with high sensitivity to the historical state of time series is introduced for prediction. The random term frequency is high and the influencing factors cannot be determined, thus one-dimensional gated recurrent unit (GRU) is used for prediction. Finally, the predicted displacement of each component is superimposed and reconstructed to realize the prediction of landslide cumulative displacement. The results show that the (PSO-VMD)-NARX-GRU landslide displacement dynamic prediction model has higher accuracy, and the prediction accuracy of each displacement component is obviously higher than that of BP neural network, support vector machine (SVM) and conventional autoregressive model ARIMA in static models, which can provide reference for step landslide displacement prediction.

Key words: landslide displacement prediction, particle swarm optimization, variational mode decomposition, Granger causality test, nonlinear autoregressive neural network with exogenous inputs, gated recurrent unit

中图分类号: 

  • TU42
[1] 杨建华, 章伟鹏, 姚池, 张小波, 周创兵. 基于变分模态分解的深埋洞室爆破开挖围岩 振动特性分析[J]. 岩土力学, 2021, 42(12): 3366-3375.
[2] 张凯, 张科, 保瑞, 刘享华, 齐飞飞, . 基于优化经验模态分解和聚类分析的滑坡 位移智能预测研究[J]. 岩土力学, 2021, 42(1): 211-223.
[3] 杨道学, 赵奎, 曾鹏, 卓毓龙, . 基于粒子群优化算法的未知波速声发射 定位数值模[J]. 岩土力学, 2019, 40(S1): 494-502.
[4] 阮永芬, 高春钦, 刘克文, 贾荣谷, 丁海涛, . 基于粒子群算法优化小波支持向量机的 岩土力学参数反演[J]. 岩土力学, 2019, 40(9): 3662-3669.
[5] 王洪波,张庆松,刘人太,李术才,张乐文,郑 卓,张连震. 基于压水试验的地层渗流场反分析[J]. , 2018, 39(3): 985-992.
[6] 邓冬梅,梁 烨,王亮清,王昌硕,孙自豪,王 聪,董曼曼. 基于集合经验模态分解与支持向量机回归的位移预测方法:以三峡库区滑坡为例[J]. , 2017, 38(12): 3660-3669.
[7] 胡 军,董建华 ,王凯凯 ,黄贵臣,. 边坡稳定性的CPSO-BP模型研究[J]. , 2016, 37(S1): 577-582.
[8] 郭庆彪 ,郭广礼 ,吕 鑫 ,陈 涛 ,王金涛,. 山区谷底沉陷预测模型及其参数反演[J]. , 2016, 37(5): 1351-1356.
[9] 宋盛渊,王 清,陈剑平,李严严,史明远. 岩体结构面的多参数优势分组方法研究[J]. , 2015, 36(7): 2041-2048.
[10] 张 研 ,苏国韶 ,燕柳斌 . 隧洞围岩损失位移估计的智能优化反分析[J]. , 2013, 34(5): 1383-1390.
[11] 陈昌富,唐仁华,梁冠亭. 基于混合粒子群算法和能量法主动土压力计算[J]. , 2012, 33(6): 1845-1850.
[12] 贾善坡 ,伍国军 ,陈卫忠. 基于粒子群算法与混合罚函数法的有限元优化反演模型及应用[J]. , 2011, 32(S2): 598-603.
[13] 邬 凯,盛 谦,梅松华,李 佳. PSO-LSSVM模型在位移反分析中的应用[J]. , 2009, 30(4): 1109-1114.
[14] 马文涛. 基于PSO和LSSVM的边坡稳定性评价方法[J]. , 2009, 30(3): 845-848.
[15] 李 亮 ,迟世春 ,郑榕明 . 基于椭球滑动体假定和三维简化 JANBU法的边坡稳定分析[J]. , 2008, 29(9): 2439-2445.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .