岩土力学 ›› 2023, Vol. 44 ›› Issue (12): 3448-3458.doi: 10.16285/j.rsm.2022.1883

• 基础理论与实验研究 • 上一篇    下一篇

煤岩组合体卸围压能量演化规律及耗散能损伤本构模型研究

茹文凯1, 2,胡善超1,李地元2,马金银2,张晨曦2,罗平框2,弓昊2,周奥辉2   

  1. 1. 山东科技大学 能源与矿业工程学院,山东 青岛 266590;2. 中南大学 资源与安全工程学院,湖南 长沙 410083
  • 收稿日期:2022-12-02 接受日期:2023-03-28 出版日期:2023-12-20 发布日期:2023-12-21
  • 通讯作者: 胡善超,男,1984年生,博士,副教授,主要从事岩石力学研究方面的相关工作。E-mail: mining2@126.com E-mail: ruwenkai@csu.edu.cn
  • 作者简介:茹文凯,男,1995年生,博士研究生,从事深部资源开采和岩石力学工作。
  • 基金资助:
    国家自然科学基金(No.5190040670,No.52274087);山东省自然科学基金(No.ZR2023ME189)

Energy evolution of unloading confining pressure and dissipative energy damage constitutive model of coal-rock combination

RU Wen-kai1, 2, HU Shan-chao1, LI Di-yuan2, MA Jin-yin2, ZHANG Chen-xi2, LUO Ping-kuang2, GONG Hao2, ZHOU Ao-hui 2   

  1. 1. School of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; 2. School of Resources and Safety Engineering, Central South University, Changsha, Hunan 410083, China
  • Received:2022-12-02 Accepted:2023-03-28 Online:2023-12-20 Published:2023-12-21
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (5190040670, 52274087) and the Natural Science Foundation of Shandong Province (ZR2023ME189).

摘要:

煤炭资源开采过程中,半煤岩巷掘进和薄煤层回采都不可避免地会使煤岩组合系统发生自由面卸荷。自由面卸荷现象往往伴随着能量的快速积聚与释放,所以探究煤岩组合体试样卸围压条件下的能量演化规律十分必要。为此,针对煤岩组合体试样开展了不同卸荷速率的卸围压试验。结果表明:(1)轴向加载阶段和应力恒定阶段为组合体试样的主要储能阶段,失稳破坏阶段主要以能量的释放和耗散为主;(2)卸荷速率加快会导致试样峰值弹性能降低,0.03 MPa/s时峰值弹性能分别为0.06、0.09、0.12 MPa/s时的1.64、2.70、3.50倍;(3)卸荷速率加快会导致试样峰后耗散能的增加,0.03、0.06、0.09、0.12 MPa/s卸荷速率下,峰后耗散能量分别为峰值弹性能的28.17%、49.53%、69.55%、92.87%;(4)卸荷速率的增大会显著增强煤岩组合体试样的拉伸破坏趋势,导致断裂角增大、拉伸次生裂纹增多和破坏强度增强;(5)建立考虑初始损伤的耗散能本构模型,合理阐释了卸围压条件下煤岩组合体试样损伤演化全过程。该研究成果对于了解卸围压速率对煤岩组合体试样的能量演化特征具有重要意义。

关键词: 煤岩组合体, 卸围压, 能量, 损伤, 本构方程

Abstract:

 In coal mining, the excavation of a coal-rock roadway and a thin coal seam will inevitably cause radial unloading of the coal-rock combination system. The radial unloading phenomenon is often accompanied by the rapid accumulation and release of energy, so it is necessary to investigate the energy evolution law of coal-rock combination specimens under the unloading confining pressure condition. To this end, the unloading confining pressure tests with different unloading rates were carried out for the coal-rock combination specimens. The results show that: (1) The axial loading and constant stress stages are the main energy storage stages of the combination specimens. The failure stage is mainly dominated by the release and dissipation of energy. (2) The acceleration of the unloading rate leads to the decrease of the peak elastic energy of the specimens, and the increment of the elastic energy at 0.03 MPa/s in the constant stress stage is 1.64, 2.70 and 3.50 times of that at 0.06 MPa/s, 0.09 MPa/s, and 0.12 MPa/s, respectively. (3) The increase of unloading rate will lead to the increase of post-peak dissipation energy of the specimen, and the post-peak dissipation energy is 28.17%, 49.53%, 69.55% and 92.87% of the peak elastic energy when the unloading rate increases from 0.03 MPa/s to 0.12 MPa/s, respectively. (4) The increase in unloading rate will significantly enhance the tensile failure tendency of coal-rock combination specimens, resulting in an increase in the fracture angle, an increase in the number of tensile secondary cracks, and an enhancement in the breaking strength. (5) A dissipative energy constitutive model considering the initial damage is established to reasonably explain the whole process of damage evolution of coal-rock combination specimens under the unloading confining pressure conditions. The research results are significant for understanding the energy evolution characteristics of coal-rock combination samples with unloading rate.

Key words: coal-rock combination, unloading confining pressure, energy, damage, constitutive equation

中图分类号: 

  • TU452
[1] 张培森, 许大强, 颜伟, 张晓乐, 董宇航, 赵铭, . 应力-渗流耦合作用下不同卸荷路径对砂岩损伤特性及能量演化规律的影响研究[J]. 岩土力学, 2024, 45(2): 325-339.
[2] 王通, 刘先峰, 袁胜洋, 蒋关鲁, 胡金山, 邵珠杰, 田士军, . 顺倾及反倾层状碎裂结构斜坡地震反应的大型振动台试验研究[J]. 岩土力学, 2024, 45(2): 489-501.
[3] 贾朝军, 庞锐锋, 俞隽, 雷明锋, 李忠, . 基于离散元的岩石冻融损伤劣化机制研究[J]. 岩土力学, 2024, 45(2): 588-600.
[4] 葛春巍, 刘钟, 余桃喜, 兰 伟, 杨宁晔, 赵梦雅, . 多层互剪搅拌桩工法的工艺因素模型试验研究[J]. 岩土力学, 2024, 45(1): 68-76.
[5] 贾超, 董啸, 丁朋朋, 冯克印, 王辉, 王明珠, . 孔隙型地热储层热固结变形特性试验研究[J]. 岩土力学, 2023, 44(增刊): 91-98.
[6] 姜明归, 孙伟, 李金鑫, 樊锴, 刘增, . 冲击荷载下全尾砂胶结充填体断裂特性与能耗特征分析[J]. 岩土力学, 2023, 44(增刊): 186-196.
[7] 安然, 陈欣, 张先伟, 王港, 高浩东, . 单轴加载过程中钢渣稳定土细观裂隙的动态演化特征[J]. 岩土力学, 2023, 44(增刊): 300-308.
[8] 梁金平, 荆浩勇, 侯公羽, 李小瑞, 张明磊, . 卸荷条件下围岩的细观损伤及力学特性研究[J]. 岩土力学, 2023, 44(增刊): 399-409.
[9] 宋硕, 任富强, 常来山, . 含预应力锚杆煤岩组合体破坏及声发射特征试验研究[J]. 岩土力学, 2023, 44(增刊): 449-460.
[10] 华成亚, 姚磊华. 边坡失稳三类能量突变判据的统一性[J]. 岩土力学, 2023, 44(增刊): 603-611.
[11] 王凯, 付强, 徐超, 艾子博, 李丹, 王磊, 舒龙勇, . 原生煤岩组合体界面力学效应数值模拟研究[J]. 岩土力学, 2023, 44(增刊): 623-633.
[12] 贾宝新, 周志扬, 苑文雅, 张晶. 基于等效质点峰值振动速度的高铁线路周边建筑结构振动评价研究[J]. 岩土力学, 2023, 44(9): 2696-2706.
[13] 沈扬, 马英豪, 芮笑曦. 波浪荷载作用下饱和钙质砂孔压特性及累积损失能量试验研究[J]. 岩土力学, 2023, 44(8): 2195-2204.
[14] 简涛, 孔令伟, 柏巍, 舒荣军, . 基于耗散能量的饱和黄土动孔压模型[J]. 岩土力学, 2023, 44(8): 2238-2248.
[15] 谢康, 苏谦, 陈晓斌, 刘宝, 王武斌, 王迅, 邓志兴, . 无砟轨道聚氨酯碎石防水联结层单元模型试验研究[J]. 岩土力学, 2023, 44(8): 2308-2317.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .