岩土力学 ›› 2024, Vol. 45 ›› Issue (3): 697-704.doi: 10.16285/j.rsm.2023.0508
马田田1,于海文1, 3,韦昌富1,伊盼盼1,姚传芹2
MA Tian-tian1, YU Hai-wen1, 3, WEI Chang-fu1, YI Pan-pan1, YAO Chuan-qin2
摘要: 膨胀土由于其骨架带有较多的固定负电荷,层间存在与负电荷平衡的可交换阳离子,使得土体呈现较强的胀缩性。研究结果表明,膨胀土的胀缩性会受到孔隙溶液化学成分的影响。选用广西地区的强膨胀土作为研究对象,开展了不同浓度的NaCl溶液对膨胀土土−水特征曲线和收缩曲线影响的试验研究,引入了粒间应力的概念对收缩曲线进行描述,该粒间应力考虑了渗透、毛细和吸附的影响。结果表明:孔隙盐溶液是通过渗透吸力对土−水特征曲线产生影响,对基质吸力的影响较小。土样在脱湿过程中的收缩变形是由粒间应力来控制的,类似于加压固结现象。大部分的收缩都发生在毛细阶段,为弹塑性变形;吸附阶段的收缩较少,为弹性变形。通过识别压缩曲线上的弹塑性分界点可以得出毛细和吸附作用的分界点,该分界点与独立测量的不同密实度下的持水曲线结果一致。结果表明,粒间应力能够更好地描述膨胀土的化学−力学行为,特别是在低含水率条件下。
中图分类号:
[1] | 张勇敢, 鲁洋, 刘斯宏, 田金博, 张思钰, 方斌昕. 土工袋抑制膨胀土冻胀性能试验及机制探讨[J]. 岩土力学, 2024, 45(3): 759-768. |
[2] | 张思奇, 裴华富, 谭道远, 朱鸿鹄, . 单、双孔隙结构非饱和黏土孔隙分布变化规律试验研究[J]. 岩土力学, 2024, 45(2): 353-363. |
[3] | 罗晓倩, 孔令伟, 鄢俊彪, 高志傲, 田升奎, . 不同饱和度下膨胀土原位孔内剪切试验及强度响应特征[J]. 岩土力学, 2024, 45(1): 153-163. |
[4] | 高志傲, 孔令伟, 王双娇, 刘炳恒, 芦剑锋, . 平面应变条件下不同裂隙方向原状膨胀土变形破坏性状与剪切带演化特征[J]. 岩土力学, 2023, 44(9): 2495-2508. |
[5] | 邹维列, 樊科伟, 张攀, 韩仲, . 土工泡沫减压膨胀土挡墙侧向压力及影响因素分析[J]. 岩土力学, 2023, 44(9): 2537-2544. |
[6] | 于海文, 马田田, 韦昌富, 郝丰富. 阳离子交换量和盐溶液浓度对膨润土膨胀变形的影响[J]. 岩土力学, 2023, 44(9): 2603-2610. |
[7] | 曾召田, 崔哲旗, 孙德安, 姚志, 潘斌, . 南宁膨胀土持水性能的温度效应及微观机制[J]. 岩土力学, 2023, 44(8): 2177-2185. |
[8] | 张俊然, 宋陈雨, 姜彤, 王俪锦, 赵金玓, 熊潭清. 非饱和黄土高吸力下的水力力学特性及微观结构分析[J]. 岩土力学, 2023, 44(8): 2229-2237. |
[9] | 张凌凯, 崔子晏, . 干湿−冻融循环条件下膨胀土的压缩及渗透特性变化规律[J]. 岩土力学, 2023, 44(3): 728-740. |
[10] | 高浩东, 安然, 孔令伟, 张先伟, 雷学文, . 干燥失水条件下膨胀土的细观裂隙演化特征研究[J]. 岩土力学, 2023, 44(2): 442-450. |
[11] | 文少杰, 郑文杰, 胡文乐, . 铅污染对黄土宏观持水性能和微观结构演化的影响研究[J]. 岩土力学, 2023, 44(2): 451-460. |
[12] | 牛庚, 朱晓凤, 李俊星, 吕梦缘, 安荔琪, 陈子晗, . 宽广吸力范围非饱和土剪切强度试验研究及其预测[J]. 岩土力学, 2023, 44(12): 3349-3359. |
[13] | 樊科伟, 邹维列, 王柳江, 廖洁, 刘斯宏, . 土工合成材料缓冲层减压膨胀土挡墙侧向压力的实用预测方法研究[J]. 岩土力学, 2023, 44(11): 3182-3190. |
[14] | 栾纪元, 王冀鹏. 基于4D显微成像的非饱和颗粒土微观力学与渗流试验研究[J]. 岩土力学, 2023, 44(11): 3252-3260. |
[15] | 李丽华, 黄 畅, 李文涛, 李孜健, 叶治, . 稻壳灰−矿渣固化膨胀土力学与微观特性研究[J]. 岩土力学, 2023, 44(10): 2821-2832. |
|