岩土力学 ›› 2024, Vol. 45 ›› Issue (4): 1039-1050.doi: 10.16285/j.rsm.2023.0560

• 基础理论与实验研究 • 上一篇    下一篇

黏聚力随机场波动范围的各向异性对流态性滑坡滑动距离的影响

张卫杰1, 2,张炜2,陈宇3,杜颖2,姬建1, 2,高玉峰1,   

  1. 1. 河海大学 岩土力学与堤坝工程教育部重点实验室,江苏 南京210024;2. 河海大学 土木与交通学院,江苏 南京 210024; 3. 江苏筑森建筑设计有限公司,江苏 常州213022
  • 收稿日期:2023-05-06 接受日期:2023-07-08 出版日期:2024-04-17 发布日期:2024-04-17
  • 作者简介:张卫杰,男,1986年生,博士,青年教授,主要从事岩土数值分析、边坡灾害防治方面的科研与教学工作。E-mail: zhangwj2016@hhu.edu.cn
  • 基金资助:
    国家自然科学基金(No. 52278344,No. 51890912);江苏省优秀青年基金(No. BK20211575)。

Influence of anisotropy of fluctuation scale of cohesion random field on the run-out distance of flow-like landslides

ZHANG Wei-jie1, 2, ZHANG Wei2, CHEN Yu3, DU Ying2, JI Jian1, 2, GAO Yu-feng1, 2   

  1. 1. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing, Jiangsu 210024, China; 2. College of Civil and Transportation Engineering, Hohai University, Nanjing, Jiangsu 210024, China; 3. Jiangsu Design of Century Architecture Co., Ltd., Changzhou, Jiangsu 213022, China
  • Received:2023-05-06 Accepted:2023-07-08 Online:2024-04-17 Published:2024-04-17
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (52278344, 51890912) and the Excellent Youth Foundation of Jiangsu Province (BK20211575).

摘要: 流态性滑坡的大变形运动过程受到诸多因素的影响,其中一个重要因素便是岩土体的强度参数。由于现场测试和室内试验的局限性,强度参数往往呈现出明显的空间变异性,同时在不同方向上具有不同的波动范围,即随机场波动范围具有各向异性。针对黏聚力随机场波动范围的各向异性对流态性滑坡滑动距离的影响问题,引入基于乔列斯基分解的中心点法实现了各向异性随机场的离散,采用摩尔-库仑破坏准则和非牛顿流体模型相结合的光滑粒子流体动力学(smoothed particle hydrodynamtcs, SPH)分析方法模拟了流态性滑坡的滑动距离,在蒙特卡洛模拟框架上提出了流态性滑坡的随机分析方法。然后,通过羊宝地滑坡和水平地层模型的模拟,验证了流态性滑坡确定性分析方法和随机场离散方法的适用性。最后,根据汶川地震中王家岩滑坡的地形资料构建了概念性的滑坡分析算例,讨论了黏聚力随机场中各向异性波动范围影响下滑坡运动过程的变化,分析了滑动距离的概率分布规律。结果表明:竖直波动范围的增加会增大滑坡滑动距离的分布范围,使其表现出更强的离散性;在黏聚力参数符合对数正态分布的前提下,滑动距离的分布也符合对数正态分布,说明流态性滑坡滑动距离的概率分布与强度参数的不确定性具有一定的联系。

关键词: 黏聚力, 波动范围, 各向异性, 流态性滑坡, 滑动距离, 光滑粒子流体动力学, 随机分析

Abstract: This study investigates the influence of many factors, specifically the strength parameters of geotechnical materials, on the run-out distance of flow-like landslides. Due to the limitations of field tests and laboratory experiments, strength parameters of soils usually exhibit significant spatial variability with different scales of fluctuation (SOF) in different directions, which is the anisotropy of SOF. Aiming at the influence mechanism of anisotropic SOF of the cohesion random field on the run-out distance of flow-like landslides, this study introduced the mid-point method based on the Cholesky decomposition to generate the anisotropic random field. The smoothed particle hydrodynamics (SPH) analysis method, combined with the Mohr-Coulomb failure criterion and the non-Newtonian fluid model, was used to simulate the sliding process and run-out distance of landslides. A stochastic analysis method for the flow-like landslide motion process was established within Monte Carlo simulation framework. Then, by simulating the Yangbaodi landslide and the horizontal strata model, the applicability of the SPH method and the random field discretization method was validated. Finally, a conceptual landslide case was constructed based on the topographic data of the Wangjiayan landslide that was triggered by the Wenchuan earthquake. The study discussed the movement process under the anisotropic SOF in the random field of cohesion and analyzed the probability distribution characteristics of run-out distances. The results show that an increase in the vertical fluctuation range results in a wider range of variation in run-out distance, and the sliding distances exhibit a discrete nature; on the premise that the cohesion parameter conforms to the lognormal distribution, the distribution of the run-out distance also conforms to the same lognormal distribution, which proves that the run-out distance distribution of flow-like landslides is closely related to the distribution characteristics of inputted parameters.

Key words: cohesion, scale of fluctuation, anisotropy, flow-like landslide, run-out distance, smoothed particle hydrodynamics (SPH), stochastic analysis

中图分类号: 

  • TU 42
[1] 王伟, 罗霄, 陈超, 刘世藩, 段雪雷, 朱其志, . 层状岩石不排气三轴压缩力学特性试验研究[J]. 岩土力学, 2024, 45(5): 1334-1342.
[2] 陈丁, 黄文雄, 黄丹. 光滑粒子法中的摩擦接触算法及其在含界面土体变形问题中的应用[J]. 岩土力学, 2024, 45(3): 885-894.
[3] 周闯, 钱建固, 尹振宇, . 各向异性砂土渗流潜蚀流体动力学-离散元流固耦合分析[J]. 岩土力学, 2024, 45(1): 302-312.
[4] 张革, 曹玲, 王成汤, . 考虑各向异性影响的冻土修正线性黏结接触模型开发及应用[J]. 岩土力学, 2023, 44(S1): 645-654.
[5] 罗国立, 张科, 齐飞飞, 朱辉, 张凯, 刘享华, . 基于3D打印的裂隙岩体力学特性尺寸效应及各向异性初探[J]. 岩土力学, 2023, 44(S1): 107-116.
[6] 谢礼焕, 刘贺娟, 班胜男, 冒海军, 夏德斌, 宋宇家, 童荣琛, 应琪祺, . 不同组分断层泥的剪切特性试验研究[J]. 岩土力学, 2023, 44(9): 2545-2554.
[7] 余俊, 李东凯, 和振, 张志中. 带有两端防渗墙坝基的各向异性渗流解析解[J]. 岩土力学, 2023, 44(8): 2381-2388.
[8] 王智超, 彭乙芹, 秦云, 田英辉, 罗光财, . 基于统一屈服准则超固结土的应力诱导各向异性下负荷面模型[J]. 岩土力学, 2023, 44(7): 1891-1900.
[9] 王伟, 张宽, 曹亚军, 陈超, 朱其志, . 层状千枚岩各向异性力学特性与脆性评价研究[J]. 岩土力学, 2023, 44(4): 975-989.
[10] 黄娟, 和振, 余俊, 杨鑫歆. 渗透各向异性圆形围堰稳态渗流场解析解[J]. 岩土力学, 2023, 44(4): 1035-1043.
[11] 陈曦. 基于方向性粗糙度参数的节理峰值抗剪 强度理论模型[J]. 岩土力学, 2023, 44(4): 1075-1088.
[12] 梁晓敏, 杨朔成, 顾晓强, . 砂土应力诱发弹性波速各向异性的试验研究[J]. 岩土力学, 2023, 44(11): 3235-3240.
[13] 张涛, 徐卫亚, 孟庆祥, 王环玲, 闫龙, 钱坤, . 基于3D打印技术的柱状节理岩体试样 力学特性试验研究[J]. 岩土力学, 2022, 43(S2): 245-254.
[14] 包含, 陈志洋, 兰恒星, 裴润生, 伍法权, 晏长根, 陶悦, . 矿物定向排列致各向异性岩石渐进破坏强度特征 ——以黑云母石英片岩为例[J]. 岩土力学, 2022, 43(8): 2060-2070.
[15] 蒋中明, 肖喆臻, 唐栋, 何国富, 许卫, . 基于裂隙渗流效应的水封油库涌水量预测分析[J]. 岩土力学, 2022, 43(4): 1041-1047.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .