›› 2009, Vol. 30 ›› Issue (12): 3569-3573.

• 基础理论与实验研究 • 上一篇    下一篇

应力损伤盐岩的声波、溶解试验研究

姜德义1,陈 结1,刘建平1, 2,周丽君1,王春荣1   

  1. 1.重庆大学 西南资源开发及环境灾害控制工程教育部重点试验室,重庆 400044;2.西南科技大学 环境与资源学院,绵阳 610010
  • 收稿日期:2009-08-15 出版日期:2009-12-10 发布日期:2010-01-18
  • 作者简介:姜德义,男,1962年生,教授,主要从事岩土力学、采矿工程、安全工程方面的研究。
  • 基金资助:

    国家重点基础研究发展规划(973)(No. 2009CB724606);国家创新研究群体基金(No. 50621403);国家自然科学基金资助项目(No.50674108)。

Experimental research on acoustic and dissolved properties of stress damaged salt rock

JIANG De-yi1, CHEN Jie1, LIU Jian-ping1, 2, ZHOU Li-jun1, WANG Chun-rong1   

  1. 1. Key Laboratory for the Exploitation of Southwestern Resources & the Environmental Disaster Control Engineering of Education Ministry, Chongqing University, Chongqing 400044, China; 2. School of Environment and Resources, Southwest University of Science and Technology, Mianyang 610010, China
  • Received:2009-08-15 Online:2009-12-10 Published:2010-01-18

摘要:

采用声波技术研究盐岩在单轴载荷条件下的损伤特征,并对受损盐岩进行溶解试验分析,以此来分析盐穴建造期盐岩的损伤溶蚀机制。试验发现:随着轴向应力的增加,侧向波速逐渐较小,在达到极限强度后波速快速减小,而不像轴向波速那样在弹性压密阶段会出现小幅增加之后才开始减小;盐岩所受压力越大,对应的溶解速度越快。由岩石单轴强度理论和损伤理论分析表明,盐岩应力损伤由盐岩晶粒相互错动促使微裂纹增多所致,侧向波速确定的损伤变量与应力具有相关性,盐岩的溶解速率随损伤变量的增加而增加。

关键词: 盐岩, 单轴载荷, 声波, 损伤, 溶解

Abstract:

In this paper, acoustic wave technology was used to study the damaged characteristics of salt rock under uniaxial loading and the effect of damage on dissolution to reveal the parietal injury dissolved characteristics in salt cavity construction period. The study shows that: when the stress increases, the lateral velocity, unlike axial velocity gradually decreasing, decreases rapidly when reaching the ultimate strength. The greater is the pressure on rock salt, the faster is the salt rock dissolving. Based on the analysis of rock strength theory and damage theory, we conclude that the stress damage of salt rock is caused by the increase of micro-cracks resulting from crystal dislocation with each other. The damage variable and stress are closely related. The rock salt dissolution rate increases with the damage variable growing.

Key words: salt rock, uniaxial load, acoustic wave, damage, dissolution

中图分类号: 

  • TU 45
[1] 陈卫忠, 李翻翻, 雷江, 于洪丹, 马永尚, . 热−水−力耦合条件下黏土岩蠕变特性研究[J]. 岩土力学, 2020, 41(2): 379-388.
[2] 张峰瑞, 姜谙男, 杨秀荣, 申发义. 冻融循环下花岗岩剪切蠕变试验与模型研究[J]. 岩土力学, 2020, 41(2): 509-519.
[3] 梁珂, 陈国兴, 刘抗, 王彦臻, . 饱和珊瑚砂最大动剪切模量的 循环加载衰退特性及预测模型[J]. 岩土力学, 2020, 41(2): 601-611.
[4] 李翻翻, 陈卫忠, 雷江, 于洪丹, 马永尚, . 基于塑性损伤的黏土岩力学特性研究[J]. 岩土力学, 2020, 41(1): 132-140.
[5] 宋勇军, 杨慧敏, 张磊涛, 任建喜. 冻结红砂岩单轴损伤破坏CT实时试验研究[J]. 岩土力学, 2019, 40(S1): 152-160.
[6] 范运辉, 朱其志, 倪涛, 张坤, 张振南, . 基于弹性张量离散化的脆延转变本构模型研究[J]. 岩土力学, 2019, 40(S1): 181-188.
[7] 陈祥胜, 李银平, 施锡林, 叶良良, 杨春和, . 地下盐穴储气库泄漏原因及防治措施研究[J]. 岩土力学, 2019, 40(S1): 367-373.
[8] 李杰林, 朱龙胤, 周科平, 刘汉文, 曹善鹏, . 冻融作用下砂岩孔隙结构损伤特征研究[J]. 岩土力学, 2019, 40(9): 3524-3532.
[9] 张超, 杨期君, 曹文贵. 考虑峰值后区应力跌落速率的 脆岩损伤本构模型研究[J]. 岩土力学, 2019, 40(8): 3099-3106.
[10] 孙峰, 薛世峰, 逄铭玉, 唐梅荣, 张翔, 李川, . 基于连续损伤的水平井射孔-近井筒三维破裂模拟[J]. 岩土力学, 2019, 40(8): 3255-3261.
[11] 刘新荣, 邓志云, 刘永权, 刘树林, 路雨明, . 地震作用下水平层状岩质边坡累积损伤与 破坏模式研究[J]. 岩土力学, 2019, 40(7): 2507-2516.
[12] 马德鹏, 周岩, 刘传孝, 商岩冬, . 不同卸围压速率下煤样卸荷破坏能量演化特征[J]. 岩土力学, 2019, 40(7): 2645-2652.
[13] 马秋峰, 秦跃平, 周天白, 杨小彬. 多孔隙岩石加卸载力学特性及本构模型研究[J]. 岩土力学, 2019, 40(7): 2673-2685.
[14] 汪 杰, 宋卫东, 谭玉叶, 付建新, 曹 帅, . 水平分层胶结充填体损伤本构模型及强度准则[J]. 岩土力学, 2019, 40(5): 1731-1739.
[15] 张 伟, 曲占庆, 郭天魁, 孙 江. 热应力影响下干热岩水压致裂数值模拟[J]. 岩土力学, 2019, 40(5): 2001-2008.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘 晓,唐辉明,刘 瑜. 基于集对分析和模糊马尔可夫链的滑坡变形预测新方法研究[J]. , 2009, 30(11): 3399 -3405 .
[2] 胡大伟,周 辉,谢守益,张 凯,邵建富,冯夏庭. 大理岩破坏阶段Biot系数研究[J]. , 2009, 30(12): 3727 -3732 .
[3] 师旭超,韩 阳. 卸荷作用下软黏土回弹吸水试验研究[J]. , 2010, 31(3): 732 -736 .
[4] 朱建明,彭新坡,姚仰平,徐金海. SMP准则在计算煤柱极限强度中的应用[J]. , 2010, 31(9): 2987 -2990 .
[5] 原喜忠,李 宁,赵秀云,杨银涛. 东北多年冻土地区地基承载力对气候变化敏感性分析[J]. , 2010, 31(10): 3265 -3272 .
[6] 白 冰,李小春,石 露,唐礼忠. 弹塑性应力-应变曲线的斜率恒等式及其验证和应用[J]. , 2010, 31(12): 3789 -3792 .
[7] 唐利民. 地基沉降预测模型的正则化算法[J]. , 2010, 31(12): 3945 -3948 .
[8] 李占海,朱万成,冯夏庭,李绍军,周 辉,陈炳瑞. 侧压力系数对马蹄形隧道损伤破坏的影响研究[J]. , 2010, 31(S2): 434 -441 .
[9] 蔡辉腾,危福泉,蔡宗文. 重庆主城区粉质黏土动力特性研究[J]. , 2009, 30(S2): 224 -228 .
[10] 宋 玲 ,刘奉银 ,李 宁 . 旋压入土式静力触探机制研究[J]. , 2011, 32(S1): 787 -0792 .