›› 2009, Vol. 30 ›› Issue (12): 3747-3752.

• 基础理论与实验研究 • 上一篇    下一篇

应力波在非线性结构面介质中的传播规律

王观石1, 2,李长洪1,陈保君3,李世海3   

  1. 1.北京科技大学,北京 100083;2.江西理工大学,赣州 341000;3.中国科学院力学研究所,北京 100080
  • 收稿日期:2008-10-09 出版日期:2009-12-10 发布日期:2010-01-18
  • 作者简介:王观石,男,1977年生,博士生,讲师,主要从事爆破与岩体力学研究方面的工作。
  • 基金资助:

    国家自然科学基金重点资助项目(No. 10632100)。

Propagation law of stress wave in nonlinear structural surface medium

WANG Guan-shi1, 2, LI Chang-hong1, CHEN Bao-jun3, LI Sh-ihai3   

  1. 1. University of Science and Technology Beijing, Beijing 100083, China; 2. Jiangxi University of Science and Technology, Ganzhou 341000, China; 3. Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, China
  • Received:2008-10-09 Online:2009-12-10 Published:2010-01-18

摘要:

用切线刚度和法线刚度描述结构面特性,研究结构面初始刚度、频率、法向闭合量与其最大允许闭合量的比值对透射系数的影响。采用基于连续介质的块体离散元程序(CDEM)模拟结构面发生非线性变形条件下块体响应,研究结果表明,应力波在岩体中传播是一个传播和块体响应的过程,结构面的存在影响了应力波传播和响应,存在一个特征频率能够有效反映结构面刚度变化,给出了近似计算该特征频率的表达式,对岩体结构探测具有一定的指导意义。

关键词: 应力波, 结构面, 非线性变形, 频谱分析

Abstract:

Property of structural surface is described by tangent stiffness and secant stiffness. The effect of initial rigidities of structural surface, frequency of stress wave and the ratio of normal and maximum allowed fracture closure of structural surface on transmission coefficient is studied. Block response of structural surface under nonlinear deformation is simulated by continuous- based discrete element method(CDEM). The results show that the stress wave propagation in rock mass is a process of both wave propagation and block response; the propagation of stress wave and response of stress wave are influenced by structural surface; stiffness variation of structural surface is effectively reflected by characteristic frequency. The computational expressions of characteristic frequency are given. The findings in this paper can be useful to the detection of rock mass structural surface.

Key words: stress wave, structural surface, nonlinear deformation, frequency analysis

中图分类号: 

  • TD 235.1
[1] 崔学杰, 晏鄂川, 陈 武. 基于改进遗传算法的岩体结构面产状聚类分析[J]. 岩土力学, 2019, 40(S1): 374-380.
[2] 彭守建, 岳雨晴, 刘义鑫, 许江, . 不同成因结构面各向异性特征及其剪切力学特性[J]. 岩土力学, 2019, 40(9): 3291-3299.
[3] 许江, 邬君宇, 刘义鑫, 雷娇, . 不同充填度下岩体剪切−渗流耦合试验研究[J]. 岩土力学, 2019, 40(9): 3416-3424.
[4] 陈文化, 张谦. 地铁列车进出站时土层空间振动特性分析[J]. 岩土力学, 2019, 40(9): 3656-3661.
[5] 吴关叶, 郑惠峰, 徐建荣. 三维复杂块体系统边坡深层加固条件下稳定性及 破坏机制模型试验研究[J]. 岩土力学, 2019, 40(6): 2369-2378.
[6] 许 江, 瞿佳美, 刘义鑫, 彭守建, 王 威, 吴善康, . 循环剪切荷载作用下充填物对结构面 剪切特性影响试验研究[J]. 岩土力学, 2019, 40(5): 1627-1637.
[7] 陈国庆, 唐 鹏, 李光明, 张广泽, 王 栋, . 岩桥直剪试验声发射频谱特征及主破裂前兆分析[J]. 岩土力学, 2019, 40(5): 1649-1656.
[8] 郑青松, 刘恩龙, 刘明星, . 三轴试验下结构面倾角对制备岩样力学特性的影响[J]. 岩土力学, 2019, 40(5): 1854-1861.
[9] 朱仁杰, 车爱兰, 严 飞, 文 海, 葛修润, . 含贯通性结构面岩质边坡动力演化规律[J]. 岩土力学, 2019, 40(5): 1907-1915.
[10] 周 辉, 程广坦, 朱 勇, 陈 珺, 卢景景, 崔国建, 杨聘卿, . 大理岩规则齿形结构面剪切特性试验研究[J]. 岩土力学, 2019, 40(3): 852-860.
[11] 许江, 雷娇, 刘义鑫, 邬君宇, . 充填物性质影响结构面剪切特性试验研究[J]. 岩土力学, 2019, 40(11): 4129-4137.
[12] 葛云峰, 钟鹏, 唐辉明, 赵斌滨, 王亮清, 夏丁, 仇雅诗, 李鹏飞, 张莉, 闻炼, 曹天赐, . 基于钻孔图像的岩体结构面几何信息智能测量[J]. 岩土力学, 2019, 40(11): 4467-4476.
[13] 周 辉, 程广坦, 朱 勇, 张春生, 卢景景, 张传庆, 章颖辉, . 基于3D雕刻技术的岩体结构面剪切各向异性研究[J]. 岩土力学, 2019, 40(1): 118-126.
[14] 魏久淇, 吕亚茹, 刘国权, 张 磊, 李 磊, . 钙质砂一维冲击响应及吸能特性试验[J]. 岩土力学, 2019, 40(1): 191-198.
[15] 邓洋洋,陈从新,夏开宗,付 华,孙朝燚,宋许根, . 地下采矿引起的程潮铁矿东区地表变形规律研究[J]. , 2018, 39(9): 3385-3394.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王 刚,李术才,王明斌. 渗透压力作用下加锚裂隙岩体围岩稳定性研究[J]. , 2009, 30(9): 2843 -2849 .
[2] 刘玉成,曹树刚,刘延保. 可描述地表沉陷动态过程的时间函数模型探讨[J]. , 2010, 31(3): 925 -931 .
[3] 刘恩龙. 岩土破损力学:结构块破损机制与二元介质模型[J]. , 2010, 31(S1): 13 -22 .
[4] 介玉新,杨光华. 基于广义位势理论的弹塑性模型的修正方法[J]. , 2010, 31(S2): 38 -42 .
[5] 杨建民,郑 刚. 基坑降水中渗流破坏归类及抗突涌验算公式评价[J]. , 2009, 30(1): 261 -264 .
[6] 周 华,王国进,傅少君,邹丽春,陈胜宏. 小湾拱坝坝基开挖卸荷松弛效应的有限元分析[J]. , 2009, 30(4): 1175 -1180 .
[7] 叶 飞,朱合华,何 川. 盾构隧道壁后注浆扩散模式及对管片的压力分析[J]. , 2009, 30(5): 1307 -1312 .
[8] 罗 强 ,王忠涛 ,栾茂田 ,杨蕴明 ,陈培震. 非共轴本构模型在地基承载力数值计算中若干影响因素的探讨[J]. , 2011, 32(S1): 732 -0737 .
[9] 王云岗 ,章 光 ,胡 琦. 斜桩基础受力特性研究[J]. , 2011, 32(7): 2184 -2190 .
[10] 龚维明,黄 挺,戴国亮. 海上风电机高桩基础关键参数试验研究[J]. , 2011, 32(S2): 115 -121 .