›› 2010, Vol. 31 ›› Issue (1): 1-8.

• 基础理论与实验研究 •    下一篇

循环荷载下砂土的剪切硬化边界面本构模型

徐舜华1,郑 刚1,徐光黎2   

  1. 1. 天津大学 土木系,天津 300072;2. 中国地质大学 工程学院,武汉 400074
  • 收稿日期:2008-06-16 出版日期:2010-01-10 发布日期:2010-02-02
  • 作者简介:徐舜华,女,1972年生,博士后,主要从事岩土本构关系、地基与基础方面的研究。
  • 基金资助:

    天津市自然科学基金(No. 07JCZDJC09800);天津市科技创新特别基金(No. 07FDZDSF01200)。

A bounding surface constitutive model of sands with shear hardening

XU Shun-hua1,ZHENG Gang1,XU Guang-li2   

  1. 1. Department of Civil Engineering, Tianjin University, Tianjin 300072, China; 2. Engineering Faculty, China Univercity of Geosciences, Wuhan 430074 China
  • Received:2008-06-16 Online:2010-01-10 Published:2010-02-02

摘要:

基于临界状态土力学框架,建立了一个适用于往返循环荷载作用的砂土边界面本构模型。采用无纯弹性域假设,认为受到反向荷载的瞬时土体就产生塑性变形,砂土的弹性区域退化为一个点。屈服面为倒子弹头型,由于砂土孔隙比与压力之间不存在惟一对应的关系,使得屈服面大小无法与体积应变直接耦合,故采用塑性偏应变而不是剑桥模型那种塑性体应变作为硬化参数。流动法则采用加入状态参数的修正的Rowe应力剪胀关系,体现了依赖状态的剪胀思想。屈服面大小的比值 反映了塑性模量的演化,并推导了 的表达式。只用1套参数,该模型就能合理地模拟砂土在不同密度和固结压力下循环荷载的应力-应变关系曲线。

关键词: 剪切硬化, 临界状态, 边界面模型, 状态参数, 剪胀

Abstract:

Based on the framework of critical state soil mechanics,a new bounding surface constitutive model for sand, being applicable to cyclic loading, is proposed. No pure elastic region hypothesis is given in this model. Elastic region of sand reduces to a point. Reverse bullet-shaped yielding surface is adopted. No unique relationship between void ratio and the mean normal stress for sand prevents the direct coupling of yield surface size to void ratio. Incremental deviatoric strain is used as a hardening parameter, instead of adopted plastic volumetric strain as hardening parameter in Original Cam-clay model. The model combines the concept of state-dependent dilatancy by incorporating state parameter concept in Rowe’s stress dilatancy equation. Bounding surface magnitude ratio ? to loading surface gives plastic modulus evolvement. Formulation of d? is deducted. A single set of model constants, once calibrated, can simulate cyclic stress-strain response under different initial void ratios and different confining pressures.

Key words: shear hardening, critical state, bounding surface model, state parameter, dilatancy

中图分类号: 

  • TU 443
[1] 张晨阳, 谌民, 胡明鉴, 王新志, 唐健健, . 细颗粒组分含量对钙质砂抗剪强度的影响[J]. 岩土力学, 2019, 40(S1): 195-202.
[2] 刘斯宏, 沈超敏, 毛航宇, 孙 屹. 堆石料状态相关弹塑性本构模型[J]. 岩土力学, 2019, 40(8): 2891-2898.
[3] 张凌凯, 王睿, 张建民, 唐新军, . 考虑颗粒破碎效应的堆石料静动力本构模型[J]. 岩土力学, 2019, 40(7): 2547-2554.
[4] 李建朋, 高岭, 母焕胜. 高应力卸荷条件下砂岩扩容特征及其剪胀角函数[J]. 岩土力学, 2019, 40(6): 2119-2126.
[5] 何子露, 刘威, 何思明, 闫帅星, . 饱和松散堆积体快速滑动的剪胀效应 机制与过程模拟[J]. 岩土力学, 2019, 40(6): 2389-2396.
[6] 王凤云, 钱德玲, . 基于统一强度理论深埋圆形隧道围岩的剪胀分析[J]. 岩土力学, 2019, 40(5): 1966-1976.
[7] 周 辉, 程广坦, 朱 勇, 陈 珺, 卢景景, 崔国建, 杨聘卿, . 大理岩规则齿形结构面剪切特性试验研究[J]. 岩土力学, 2019, 40(3): 852-860.
[8] 陆 勇, 周国庆, 杨冬英, 宋家庆, . 砂土剪胀软化、剪缩硬化统一本构的显式计算[J]. 岩土力学, 2019, 40(3): 978-986.
[9] 董建勋, 刘海笑, 李 洲. 适用于砂土循环加载分析的边界面塑性模型[J]. 岩土力学, 2019, 40(2): 684-692.
[10] 郭万里, 蔡正银, 武颖利, 黄英豪. 粗粒土的颗粒破碎耗能及剪胀方程研究[J]. 岩土力学, 2019, 40(12): 4703-4710.
[11] 金俊超, 佘成学, 尚朋阳. 硬岩弹塑性变形破坏过程中强度参数 及剪胀角演化模型研究[J]. 岩土力学, 2019, 40(11): 4401-4411.
[12] 高源, 刘海笑, 李洲, . 适用于饱和砂土循环动力分析边界面 塑性模型的显式积分算法[J]. 岩土力学, 2019, 40(10): 3951-3958.
[13] 郭莹, 刘晓东. 成样方法对饱和粉砂不同应力路径下固结 排水剪切试验结果的影响[J]. 岩土力学, 2019, 40(10): 3783-3788.
[14] 王 军, 胡惠丽, 刘飞禹, 蔡袁强, . 粒孔比对筋土界面直剪特性的影响[J]. 岩土力学, 2018, 39(S2): 115-122.
[15] 陈 锋, 张青庆, 姚 威, 叶良良, . 含泥盐岩的扩容特性与剪胀角模型[J]. 岩土力学, 2018, 39(S2): 195-201.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 肖云华,王 清,陈剑平. 基于优化技术的权重计算方法在岩体质量评价中的应用[J]. , 2009, 30(9): 2686 -2690 .
[2] 冶小平,孙 强,王媛媛,李厚恩,薛 雷. 一种改进的粘土亚塑性本构模型[J]. , 2010, 31(4): 1099 -1102 .
[3] 陈 瑜,曹 平,蒲成志,刘业科,李 娜. 水-岩作用对岩石表面微观形貌影响的试验研究[J]. , 2010, 31(11): 3452 -3458 .
[4] 赵延喜,徐卫亚. 基于AHP和模糊综合评判的TBM施工风险评估[J]. , 2009, 30(3): 793 -798 .
[5] 李新平,孟 建,徐鹏程. 溪洛渡水电站出线竖井爆破振动效应研究[J]. , 2011, 32(2): 474 -480 .
[6] 王俊卿,李 靖,李 琦,陈 立. 黄土高边坡稳定性影响因素分析 ——以宝鸡峡引水工程为例[J]. , 2009, 30(7): 2114 -2118 .
[7] 龚彦峰,张俊儒. 隧道单层衬砌设计方法研究及应用[J]. , 2011, 32(4): 1062 -1068 .
[8] 陈 勇 ,柏建彪 ,朱涛垒 ,闫 帅 ,赵社会 ,李学臣 . 沿空留巷巷旁支护体作用机制及工程应用[J]. , 2012, 33(5): 1427 -1432 .
[9] 宋勇军 ,雷胜友 ,韩铁林 . 一种新的岩石非线性黏弹塑性流变模型[J]. , 2012, 33(7): 2076 -2080 .
[10] 刘建华 ,汪 优 ,付康林 ,钟 昆鸟 . 简谐振动荷载下锚杆加固岩质边坡的受力分析[J]. , 2012, 33(S1): 85 -90 .