›› 2010, Vol. 31 ›› Issue (4): 1247-1252.

• 岩土工程研究 • 上一篇    下一篇

一种盾构掘进引起地表沉降的实用预测方法

齐 涛1, 2,张庆贺1, 2,胡向东1, 2,范新健1, 2   

  1. 1.同济大学 地下建筑与工程系,上海 200092;2.同济大学 岩土及地下工程教育部重点实验室,上海 200092
  • 收稿日期:2008-07-03 出版日期:2010-04-10 发布日期:2010-04-30
  • 作者简介:齐涛,男,1982年生,硕士研究生,主要从事隧道与地下建筑工程的科研和实践工作。

A practical approach for predicting surface settlements induced by shield tunneling

QI Tao 1, 2, ZHANG Qing-he 1, 2, HU Xiang-dong 1, 2, FAN Xin-jian 1, 2   

  1. 1.Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China; 2.Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China
  • Received:2008-07-03 Online:2010-04-10 Published:2010-04-30

摘要:

盾构隧道施工中,提前预知盾构影响范围内的地表沉降情况对减少施工对既有建筑物的危害是有帮助的。Peck法公式用于描述隧道掘进引起地表沉降分布曲线已经被工程界广为接受,但地层损失一般从工程经验中获得,导致该理论在实践中应用受限。基于实测沉降数据,用最小二乘法求解地层损失,并且对Peck法公式进行了拓展,建立了一种用于预测盾构影响范围内地表沉降情况的实用方法。并编制了可视化的电算程序,工程实例表明,该方法行之有效。

关键词: 盾构隧道, 地表沉降, 沉降预测, Peck法公式, 地层损失

Abstract:

During shield tunneling, it is helpful to predict surface settlements near the shield machine for protecting preexisting structures from damage. Gaussian equation is accepted widely by engineers to describe the surface settlements induced by shield tunneling, but ground loss is derived from the engineering experience, so that this method is subjected to limitation in practice. The ground loss is derived by the least square method based on observed surface settlements; the Peck formula is extended to establish a new approach to predict the surface settlements near the shield machine. A visual program is written based on this new approach, which is proved to be dependable by a real example.

Key words: shield tunnel, surface settlement, settlement prediction, Peck formula, ground loss

中图分类号: 

  • O 24
[1] 魏纲, 张鑫海, 林心蓓, 华鑫欣, . 基坑开挖引起的旁侧盾构隧道横向受力变化研究[J]. 岩土力学, 2020, 41(2): 635-644.
[2] 杨振兴, 陈健, 孙振川, 游永锋, 周建军, 吕乾乾, . 泥水平衡盾构用海水泥浆的改性试验研究[J]. 岩土力学, 2020, 41(2): 501-508.
[3] 章定文, 刘志祥, 沈国根, 鄂俊宇, . 超大直径浅埋盾构隧道土压力实测分析 及其计算方法适用性评价[J]. 岩土力学, 2019, 40(S1): 91-98.
[4] 张治国, 李胜楠, 张成平, 王志伟, . 考虑地下水位升降影响的盾构施工诱发地层 变形和衬砌响应分析[J]. 岩土力学, 2019, 40(S1): 281-296.
[5] 黄大维, 周顺华, 冯青松, 罗锟, 雷晓燕, 许有俊, . 地表均布超载作用下盾构隧道上覆土层 竖向土压力转移分析[J]. 岩土力学, 2019, 40(6): 2213-2220.
[6] 莫振泽, 王梦恕, 李海波, 钱勇进, 罗跟东, 王辉, . 粉砂地层中浓泥土压盾构泥膜效应引起的 孔压变化规律试验研究[J]. 岩土力学, 2019, 40(6): 2257-2263.
[7] 钟国强, 王 浩, 李 莉, 王成汤, 谢壁婷, . 基于SFLA-GRNN模型的基坑地表最大沉降预测[J]. 岩土力学, 2019, 40(2): 792-798.
[8] 杨公标, 张成平, 闵 博, 蔡 义, . 浅埋含空洞地层圆形隧道开挖引起的位移 复变函数弹性解[J]. 岩土力学, 2018, 39(S2): 25-36.
[9] 姚爱军,张剑涛,郭海峰,郭彦非. 地铁盾构隧道上方基坑开挖卸荷-加载影响研究[J]. , 2018, 39(7): 2318-2326.
[10] 钟 宇,陈 健,陈国良,吴佳明, . 基于建筑信息模型技术的盾构隧道结构信息模型建模方法[J]. , 2018, 39(5): 1867-1876.
[11] 杨文波,陈子全,徐朝阳,晏启祥,何 川,韦 凯, . 盾构隧道与周围土体在列车振动荷载作用下的动力响应特性[J]. , 2018, 39(2): 537-545.
[12] 康 成, 梅国雄, 梁荣柱, 吴文兵, 方宇翔, 柯宅邦, . 地表临时堆载诱发下既有盾构隧道纵向变形分析[J]. 岩土力学, 2018, 39(12): 4605-4616.
[13] 胡之锋,陈 健,邱岳峰,李健斌,周兴涛, . 挡墙水平变位诱发地表沉降的显式解析解[J]. , 2018, 39(11): 4165-4175.
[14] 李长俊,陈卫忠,杨建平,刘金泉, . 运营期水下盾构隧道管片接缝张开度变化规律[J]. , 2018, 39(10): 3783-3793.
[15] 魏 纲,林 雄,金 睿,丁 智,. 双线盾构施工时邻近地下管线安全性判别[J]. , 2018, 39(1): 181-190.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 董 诚,郑颖人,陈新颖,唐晓松. 深基坑土钉和预应力锚杆复合支护方式的探讨[J]. , 2009, 30(12): 3793 -3796 .
[2] 任 松,姜德义,杨春和,藤宏伟. 共和隧道开裂段页岩蠕变本构试验及离散元数值模拟研究[J]. , 2010, 31(2): 416 -421 .
[3] 梁桂兰,徐卫亚,谈小龙. 基于熵权的可拓理论在岩体质量评价中的应用[J]. , 2010, 31(2): 535 -540 .
[4] 于琳琳,徐学燕,邱明国,闫自利,李鹏飞. 冻融作用对饱和粉质黏土抗剪性能的影响[J]. , 2010, 31(8): 2448 -2452 .
[5] 沈银斌,朱大勇,汪鹏程,姚华彦. 基于数值应力场的边坡临界滑动场[J]. , 2010, 31(S1): 419 -423 .
[6] 王协群,张有祥,邹维列,熊海帆. 降雨入渗条件下非饱和路堤变形与边坡的稳定数值模拟[J]. , 2010, 31(11): 3640 -3644 .
[7] 王 伟,刘必灯,周正华,王玉石,赵纪生. 刚度和阻尼频率相关的等效线性化方法[J]. , 2010, 31(12): 3928 -3933 .
[8] 王海波,徐 明,宋二祥. 基于硬化土模型的小应变本构模型研究[J]. , 2011, 32(1): 39 -43 .
[9] 曹光栩,宋二祥,徐 明. 山区机场高填方地基工后沉降变形简化算法[J]. , 2011, 32(S1): 1 -5 .
[10] 刘华丽 ,朱大勇 ,钱七虎 ,李宏伟. 边坡三维端部效应分析[J]. , 2011, 32(6): 1905 -1909 .