›› 2010, Vol. 31 ›› Issue (6): 1833-1840.

• 岩土工程研究 • 上一篇    下一篇

碎石桩复合地基非线性固结解析解

卢萌盟1, 2,谢康和2,王玉林2,蔡 新2   

  1. 1. 中国矿业大学 深部岩土力学与地下工程国家重点实验室力学与建筑工程学院,江苏 徐州 221008; 2. 浙江大学 软弱土与环境土工教育部重点实验室,杭州 310058
  • 收稿日期:2009-04-25 出版日期:2010-06-10 发布日期:2010-06-25
  • 作者简介:卢萌盟,男,1979年生,博士后,讲师,主要从事软黏土力学与地基处理方面的教学和科研工作。
  • 基金资助:

    中国矿业大学青年科研基金资助项目(No. 2009A008);中国矿业大学人才引进资助项目;国家自然科学基金项目资助(No. 50679074)。

Analytical solution for nonlinear consolidation of stone column reinforced composite ground

LU Meng-meng1, 2,XIE Kang-he2,WANG Yu-lin2,CAI Xin2   

  1. 1. State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics & Civil Engineering, China University of Mining & Technology, Xuzhou, Jiangsu 221008, China; 2. MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310027, China
  • Received:2009-04-25 Online:2010-06-10 Published:2010-06-25

摘要:

通过引入土体的e-lgσ和e-lgk对数模型,考虑了土体固结过程中压缩模量非线性增长和渗透系数非线性减小的特征,给出了一种碎石桩复合地基非线性固结解析解,并对复合地基的非线性固结性状进行了分析。结果表明,按应力和按变形定义的两种固结度不相等,按变形定义的固结度一般大于按应力定义的固结度;当压缩指数小于渗透指数时,不考虑土体的非线性特征会低估地基的固结度,而当压缩指数大于渗透指数时,不考虑土体的非线性则会高估地基的固结度;对于按应力定义的固结度来说,当压缩指数小于渗透指数时,随着附加应力的增大,地基固结速度加快,而当压缩指数大于渗透指数时,附加应力增大,地基固结减慢;对于按变形定义的固结度来说,不论压缩指数大于还是小于渗透指数,附加应力增大,地基固结速度总是加快。

关键词: 固结, 复合地基, 碎石桩, 非线性, 对数模型, 压缩指数, 渗透指数

Abstract:

By incorporating the logarithm models of e-lgσ and e-lgk of soil, the characteristics of the nonlinear increase in the soil’s compressive modulus and the nonlinear decrease in the soil’s permeability during consolidation were considered. Based on the above characteristics, an analytical solution was developed for the consolidation of stone column reinforced composite ground. The nonlinear consolidation behavior of composite ground was analyzed and the results show: the average degree of consolidation (ADC) in terms of stress is not equal to that in terms of deformation; in addition, the ADC in terms of stress is greater than that in terms of deformation. When the soil’s compressive indices are lower than the permeability indices, ignoring the soil’s nonlinearity will under-estimate the consolidation rate of the composite ground; however, when the soil’s compressive indices is greater than the permeability indices, the reverse is true, i.e. ignoring the nonlinearity will over-estimate the consolidation rate. For the ADC based on stress, when the soil’s compressive indices are lower than the permeability indices, the increase in the stress increment within the ground due to the external loads leads to an acceleration of the consolidation rate; however, when the compressive indices is larger than the permeability indices, the increase in the stress increment causes a reduction in the consolidation rate. For the ADC in terms of deformation, whether the compressive indices are lower or larger than the permeability indices, an increase in the stress increment within the ground always accelerates the consolidation rate of the composite ground.

Key words: consolidation, composite ground, stone column, nonlinearity, logarithm model, compressive indices, permeability indices

中图分类号: 

  • TU 470
[1] 涂园, 王奎华, 周建, 胡安峰, . 有效应力法和有效固结压力法在预压地基 强度计算中的应用[J]. 岩土力学, 2020, 41(2): 645-654.
[2] 黄宇华, 徐林荣, 周俊杰, 蔡雨, . 基于改进Terzarghi方法的桩网地基桩土应力计算[J]. 岩土力学, 2020, 41(2): 667-675.
[3] 柯锦福, 王水林, 郑宏, 杨永涛, . 基于修正对称和反对称分解的 三维数值流形元法应用推广[J]. 岩土力学, 2020, 41(2): 695-706.
[4] 程涛, 晏克勤, 胡仁杰, 郑俊杰, 张欢, 陈合龙, 江志杰, 刘强, . 非饱和土拟二维平面应变固结问题的解析计算方法[J]. 岩土力学, 2020, 41(2): 453-460.
[5] 蒙宇涵, 张必胜, 陈征, 梅国雄, . 线性加载下含砂垫层地基固结分析[J]. 岩土力学, 2020, 41(2): 461-468.
[6] 刘忠玉, 夏洋洋, 张家超, 朱新牧. 考虑Hansbo渗流的饱和黏土 一维弹黏塑性固结分析[J]. 岩土力学, 2020, 41(1): 11-22.
[7] 于丽, 吕城, 段儒禹, 王明年, . 考虑孔隙水压力及非线性Mohr-Coulomb破坏准则下浅埋土质隧道三维塌落机制的上限分析[J]. 岩土力学, 2020, 41(1): 194-204.
[8] 何鹏飞, 马巍, 穆彦虎, 黄永庭, 董建华, . 黄土−砂浆块界面剪切特性试验及本构模型研究[J]. 岩土力学, 2019, 40(S1): 82-90.
[9] 李晶晶, 孔令伟, . 膨胀土卸荷蠕变特性及其非线性蠕变模型[J]. 岩土力学, 2019, 40(9): 3465-3475.
[10] 张雷, 王宁伟, 景立平, 方晨, 董瑞, . 电渗排水固结中电极材料的对比试验[J]. 岩土力学, 2019, 40(9): 3493-3501.
[11] 张玉国, 万东阳, 郑言林, 韩帅, 杨晗玥, 段萌萌. 考虑径向渗透系数变化的真空预压 竖井地基固结解析解[J]. 岩土力学, 2019, 40(9): 3533-3541.
[12] 邱金伟, 蒲诃夫, 陈训龙, 吕伟东, 李磊. 污染泥堆场处置中自重固结 与污染物迁移的耦合分析[J]. 岩土力学, 2019, 40(8): 3090-3098.
[13] 张治国, 黄茂松, 杨 轩, . 基于衬砌长期渗漏水影响的隧道施工扰动 诱发超孔隙水压消散及地层固结沉降解[J]. 岩土力学, 2019, 40(8): 3135-3144.
[14] 李称, 吴文兵, 梅国雄, 宗梦繁, 梁荣柱, . 不同排水条件下城市固废一维降解固结解析解[J]. 岩土力学, 2019, 40(8): 3071-3080.
[15] 韩俊艳, 钟紫蓝, 李立云, 赵密, 万宁潭, 杜修力. 纵向非一致激励下自由场土体的非线性 地震反应研究[J]. 岩土力学, 2019, 40(7): 2581-2592.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张宜虎,周火明,邬爱清. 结构面网络模拟结果后处理研究[J]. , 2009, 30(9): 2855 -2861 .
[2] 杨 光,孙 逊,于玉贞,张丙印. 不同应力路径下粗粒料力学特性试验研究[J]. , 2010, 31(4): 1118 -1122 .
[3] 闻世强,陈育民,丁选明,左威龙. 路堤下浆固碎石桩复合地基现场试验研究[J]. , 2010, 31(5): 1559 -1563 .
[4] 张常光,张庆贺,赵均海. 非饱和土抗剪强度及土压力统一解[J]. , 2010, 31(6): 1871 -1876 .
[5] 李卫超,熊巨华,杨 敏. 分层土中水泥土围护结构抗倾覆验算方法的改进[J]. , 2011, 32(8): 2435 -2440 .
[6] 张桂民 ,李银平 ,施锡林 ,杨春和 ,王李娟. 一种交互层状岩体模型材料制备方法及初步试验研究[J]. , 2011, 32(S2): 284 -289 .
[7] 王 伟 李小春 李 强 石 露 王 颖 白 冰. 小尺度原位瞬态压力脉冲渗透性测试系统及试验研究[J]. , 2011, 32(10): 3185 -3189 .
[8] 胡 存,刘海笑,黄 维. 考虑循环载荷下饱和黏土软化的损伤边界面模型研究[J]. , 2012, 33(2): 459 -466 .
[9] 李术才 ,赵 岩 ,徐帮树 ,李利平 ,刘 钦 ,王育奎 . 海底隧道涌水量数值计算的渗透系数确定方法[J]. , 2012, 33(5): 1497 -1504 .
[10] 王洪新 ,孙玉永 . 考虑基坑开挖宽度的杆系有限元算法及试验研究[J]. , 2012, 33(9): 2781 -2787 .