›› 2010, Vol. 31 ›› Issue (6): 1995-2000.

• 数值分析 • 上一篇    下一篇

考虑非线性徐变的混凝土温度裂缝扩展过程模拟

刘杏红1,周创兵2,常晓林2,周 伟2   

  1. 1. 武汉大学 土木建筑工程学院;2. 武汉大学 水资源与水电工程科学国家重点实验室,武汉 430072
  • 收稿日期:2008-11-10 出版日期:2010-06-10 发布日期:2010-06-25
  • 作者简介:刘杏红,女,1979年生,博士,讲师,主要从事混凝土结构数值仿真和结构风险方面的研究。
  • 基金资助:

    国家自然科学青年基金项目(No. 50909078)。

Simulation of temperature crack propagation considering nonlinear creep of concrete

LIU Xing-hong1,ZHOU Chuang-bing2,CHANG Xiao-lin2,ZHOU Wei2   

  1. 1. School of Civil and Architectural Enginering, Wuhan University, Wuhan 430072, China; 2. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
  • Received:2008-11-10 Online:2010-06-10 Published:2010-06-25

摘要:

混凝土温度应力超过相应龄期的抗拉强度一半时,混凝土的徐变变形不再与应力呈线性关系。采用一个混凝土非线性徐变模型来进行混凝土的温度应力计算,并给出了相应的算法。同时,吸取无网格方法在裂缝扩展模拟方面的优势,采用无网格方法对混凝土的温度裂缝过程进行了仿真计算。数值算例计算结果表明,所编制的无网格法程序具有较好的收敛性和可靠性,能够有效地模拟混凝土块在温度应力作用下的开裂发展过程,考虑混凝土非线性徐变效应后,在开裂时刻混凝土急剧增加的非线性徐变变形缓和了缝端的温度拉应力,使得相同龄期混凝土的裂缝深度和扩展速率要比只考虑混凝土线性徐变要小一些。

关键词: 混凝土, 非线性徐变, 无网格法, 温度裂缝, 数值模拟

Abstract:

A nonlinear relation between concrete creep and its thermal stress appears when the thermal stress is more than the half tensile strength of corresponding aged concrete. A nonlinear creep model of concrete is adopted to simulate its thermal stress; and a numerical algorithm is also presented. With the advantage about temperature crack propagation, element-free Galerkin method(EFGM) is adopted to simulate temperature crack propagation. A numerical example shows that EFGM is of good accuracy and reliability; and crack depth and extension speed of concrete after considering nonlinear creep effect are less than those only considering linear creep because of that the rapid increased nonlinear creep at the cracking moment relaxed thermal stress at crack tip.

Key words: concrete, nonlinear creep, element-free method, temperature crack, numerical simulation

中图分类号: 

  • TU 42
[1] 李翻翻, 陈卫忠, 雷江, 于洪丹, 马永尚, . 基于塑性损伤的黏土岩力学特性研究[J]. 岩土力学, 2020, 41(1): 132-140.
[2] 夏 坤, 董林, 蒲小武, 李璐, . 黄土塬地震动响应特征分析[J]. 岩土力学, 2020, 41(1): 295-304.
[3] 王青志, 房建宏, 晁刚. 高温冻土地区高等级公路片块石路基降温效果分析[J]. 岩土力学, 2020, 41(1): 305-314.
[4] 郭院成, 李明宇, 张艳伟, . 预应力锚杆复合土钉墙支护体系增量解析方法[J]. 岩土力学, 2019, 40(S1): 253-258.
[5] 闫国强, 殷跃平, 黄波林, 张枝华, 代贞伟, . 三峡库区巫山金鸡岭滑坡成因机制与变形特征[J]. 岩土力学, 2019, 40(S1): 329-340.
[6] 秦伟, 戴国亮, 马李志, 裴铭海, 王磊, 朱光耀, 高博, . 珊瑚礁地层中PHC桩原位静载试验研究[J]. 岩土力学, 2019, 40(S1): 381-389.
[7] 刘红岩. 宏细观缺陷对岩体力学特性及边坡稳定影响研究[J]. 岩土力学, 2019, 40(S1): 431-439.
[8] 金爱兵, 刘佳伟, 赵怡晴, 王本鑫, 孙浩, 魏余栋, . 卸荷条件下花岗岩力学特性分析[J]. 岩土力学, 2019, 40(S1): 459-467.
[9] 韩征, 粟滨, 李艳鸽, 王伟, 王卫东, 黄健陵, 陈光齐, . 基于HBP本构模型的泥石流动力过程SPH数值模拟[J]. 岩土力学, 2019, 40(S1): 477-485.
[10] 吴锦亮, 何吉, . 岩质边坡动态开挖模拟的复合单元模型[J]. 岩土力学, 2019, 40(S1): 535-540.
[11] 方金城, 孔纲强, 陈斌, 车平, 彭怀风, 吕志祥, . 混凝土水化作用对群桩热力学特性影响现场试验[J]. 岩土力学, 2019, 40(8): 2997-3003.
[12] 吴凤元, 樊赟赟, 陈剑平, 李军, . 基于不同侵蚀模型的高速崩滑碎屑 流动力过程模拟分析[J]. 岩土力学, 2019, 40(8): 3236-3246.
[13] 孙峰, 薛世峰, 逄铭玉, 唐梅荣, 张翔, 李川, . 基于连续损伤的水平井射孔-近井筒三维破裂模拟[J]. 岩土力学, 2019, 40(8): 3255-3261.
[14] 穆锐, 浦少云, 黄质宏, 李永辉, 郑培鑫, 刘 旸, 刘 泽, 郑红超, . 土岩组合岩体中抗拔桩极限承载力的确定[J]. 岩土力学, 2019, 40(7): 2825-2837.
[15] 金俊超, 佘成学, 尚朋阳. 基于应变软化指标的岩石非线性蠕变模型[J]. 岩土力学, 2019, 40(6): 2239-2246.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 吴 琼,唐辉明,王亮清,林志红. 库水位升降联合降雨作用下库岸边坡中的浸润线研究[J]. , 2009, 30(10): 3025 -3031 .
[2] 吴昌瑜,张 伟,李思慎,朱国胜. 减压井机械淤堵机制与防治方法试验研究[J]. , 2009, 30(10): 3181 -3187 .
[3] 陈红江,李夕兵,刘爱华. 矿井突水水源判别的多组逐步Bayes判别方法研究[J]. , 2009, 30(12): 3655 -3659 .
[4] 和法国,谌文武,韩文峰,张景科. 高分子材料SH固沙性能与微结构相关性研究[J]. , 2009, 30(12): 3803 -3807 .
[5] 雷永生. 西安地铁二号线下穿城墙及钟楼保护措施研究[J]. , 2010, 31(1): 223 -228 .
[6] 肖 忠,王元战,及春宁,黄泰坤,单 旭. 波浪作用下加固软基上大圆筒结构稳定性分析[J]. , 2010, 31(8): 2648 -2654 .
[7] 柴 波,殷坤龙,陈丽霞,李远耀. 岩体结构控制下的斜坡变形特征[J]. , 2009, 30(2): 521 -525 .
[8] 赵洪波,茹忠亮,张士科. SVM在地下工程可靠性分析中的应用[J]. , 2009, 30(2): 526 -530 .
[9] 徐 扬,高 谦,李 欣,李俊华,贾云喜. 土石混合体渗透性现场试坑试验研究[J]. , 2009, 30(3): 855 -858 .
[10] 邓华锋,张国栋,王乐华,邓成进,郭 靖,鲁 涛. 导流隧洞开挖施工的爆破振动监测与分析[J]. , 2011, 32(3): 855 -860 .