›› 2010, Vol. 31 ›› Issue (S1): 394-397.

• 数值分析 • 上一篇    下一篇

泥石流启动过程PFC数值模拟

胡明鉴,汪 稔,陈中学,王志兵   

  1. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点试验室,武汉 430071
  • 收稿日期:2010-04-25 出版日期:2010-08-10 发布日期:2010-09-09
  • 作者简介:胡明鉴,男,1974年生,博士,副研究员。主要从事滑坡泥石流灾害和岩土工程方面的研究工作。
  • 基金资助:

    国家自然科学基金青年基金(No. 50709035);中科院院长奖获得者启动基金资助。

Initiation process simulation of debris deposit based on particle flow code

HU Ming-jian, WANG Ren, CHEN Zhong-xue, WANG Zhi-bing   

  1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
  • Received:2010-04-25 Online:2010-08-10 Published:2010-09-09

摘要:

泥石流松散碎屑物质具有散粒体的基本特征,在暴雨激发下容易形成泥石流,整个过程具有散粒体大变形的特征。颗粒流理论是基于离散单元法模拟圆形颗粒介质的运动及其相互作用,在模拟颗粒相互作用和大变形问题研究方面具有显著的优越性。为分析泥石流松散碎屑物质启动形成泥石流的过程及其与土体含水率的关系,采用二维颗粒流程序(PFC2D)分析降雨作用下松散碎屑物质启动形成泥石流的过程,揭示崩滑堆积体在降雨作用下含水率超过临界值后质点运动速度和位移增加,松散碎屑物质启动并加速而导致滑坡泥石流连锁式破坏的过程和机制。

关键词: 泥石流, 松散碎屑物, 颗粒流, 临界含水率, 启动

Abstract:

The mud-rock loosening deposit which has the basic character of granular mixtures is easily turning into debris flow if inspired by rainstorm. Based on the discrete element method and its superiority on round particles moving and mutually affecting and big distortion question research. In order to analyze the relationship between the moisture content and the process of loosening deposit forming in the mud-rock flow, this thesis simulated the process of loosening deposit turning into debris flow under condition of rainfall by using the two-dimensional particle flow code software-PFC2D. Result showed that the particle would start moving and accelerating then caused the displacement increasing, induced the chain destroy process and mechanism of landslide and debris flow when the water content surpassing the critical moisture content.

Key words: debris flow, loosening deposit, particle flow code, critical water content, initiation

中图分类号: 

  • TV 144
[1] 韩征, 粟滨, 李艳鸽, 王伟, 王卫东, 黄健陵, 陈光齐, . 基于HBP本构模型的泥石流动力过程SPH数值模拟[J]. 岩土力学, 2019, 40(S1): 477-485.
[2] 王东坡, 陈政, 何思明, 陈克坚, 刘发明, 李明清, . 泥石流冲击桥墩动力相互作用物理模型试验[J]. 岩土力学, 2019, 40(9): 3363-3372.
[3] 魏 星, 张 昭, 王 刚, 张建民, . 饱和砂土液化后大变形机制的离散元细观分析[J]. 岩土力学, 2019, 40(4): 1596-1602.
[4] 吴顺川, 马 骏, 程 业, 成子桥, 李建宇, . 平台巴西圆盘研究综述及三维启裂点研究[J]. 岩土力学, 2019, 40(4): 1239-1247.
[5] 裴向军, 朱 凌, 崔圣华, 张晓超, 梁玉飞, 高会会, 张子东. 大光包滑坡层间错动带液化特性及 滑坡启动成因探讨[J]. 岩土力学, 2019, 40(3): 1085-1096.
[6] 丛 怡, 丛 宇, 张黎明, 贾乐鑫, 王在泉, . 大理岩加、卸荷破坏过程的三维颗粒流模拟[J]. 岩土力学, 2019, 40(3): 1179-1186.
[7] 张成功, 尹振宇, 吴则祥, 金银富, . 颗粒形状对粒状材料圆柱塌落影响的 三维离散元模拟 [J]. 岩土力学, 2019, 40(3): 1197-1203.
[8] 王友彪, 姚昌荣, 刘赛智, 李亚东, 张 迅. 泥石流对桥墩冲击力的试验研究[J]. 岩土力学, 2019, 40(2): 616-623.
[9] 郑光, 许强, 彭双麒. 岩质滑坡−碎屑流的运动距离计算公式研究[J]. 岩土力学, 2019, 40(12): 4897-4906.
[10] 王桂林, 梁再勇, 张 亮, 孙 帆, . Z型裂隙对砂岩强度和破裂行为影响机制研究[J]. 岩土力学, 2018, 39(S2): 389-397.
[11] 李 杨, 佘成学, 朱焕春, . 现场堆石体振动碾压的颗粒流模拟及验证[J]. 岩土力学, 2018, 39(S2): 432-442.
[12] 伍天华, 周 喻, 王 莉, 孙金海, 赵 欢, 孙 铮, . 单轴压缩条件下岩石孔-隙相互作用机制细观研究[J]. 岩土力学, 2018, 39(S2): 463-472.
[13] 陈家瑞,董 云,张 渊,蒋 洋,张继华,何春林,李西蒙,. 考虑倾角与开度的薄基岩裂隙溃沙特性研究[J]. , 2018, 39(S1): 244-250.
[14] 李兆华,胡 杰,冯吉利,龚文俊. 基于黏弹塑性本构模型的泥石流数值模拟[J]. , 2018, 39(S1): 513-520.
[15] 陈兴长,陈 慧,游 勇,柳金峰,. 泥石流拦砂坝底扬压力分布及影响因素试验[J]. , 2018, 39(9): 3229-3236.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 吴 琼,唐辉明,王亮清,林志红. 库水位升降联合降雨作用下库岸边坡中的浸润线研究[J]. , 2009, 30(10): 3025 -3031 .
[2] 和法国,谌文武,韩文峰,张景科. 高分子材料SH固沙性能与微结构相关性研究[J]. , 2009, 30(12): 3803 -3807 .
[3] 雷永生. 西安地铁二号线下穿城墙及钟楼保护措施研究[J]. , 2010, 31(1): 223 -228 .
[4] 肖 忠,王元战,及春宁,黄泰坤,单 旭. 波浪作用下加固软基上大圆筒结构稳定性分析[J]. , 2010, 31(8): 2648 -2654 .
[5] 柴 波,殷坤龙,陈丽霞,李远耀. 岩体结构控制下的斜坡变形特征[J]. , 2009, 30(2): 521 -525 .
[6] 赵洪波,茹忠亮,张士科. SVM在地下工程可靠性分析中的应用[J]. , 2009, 30(2): 526 -530 .
[7] 章定文,刘松玉,顾沉颖. 各向异性初始应力状态下圆柱孔扩张理论弹塑性分析[J]. , 2009, 30(6): 1631 -1634 .
[8] 邓华锋,张国栋,王乐华,邓成进,郭 靖,鲁 涛. 导流隧洞开挖施工的爆破振动监测与分析[J]. , 2011, 32(3): 855 -860 .
[9] 谭峰屹,邹志悝,邹荣华,林祖锴,郑德高. 换填黏性土料工程特性试验研究[J]. , 2009, 30(S2): 154 -157 .
[10] 胡再强,李宏儒,苏永江. 岗曲河混凝土面板堆石坝三维静力应力变形分析[J]. , 2009, 30(S2): 312 -0317 .