›› 2010, Vol. 31 ›› Issue (9): 2991-2994.

• 数值分析 • 上一篇    下一篇

锚杆临界锚固长度简化计算方法

龙 照1,赵明华2,张恩祥1,刘峻龙1   

  1. 1. 中国市政工程西北设计研究院有限公司,兰州 73000;2. 湖南大学 岩土工程研究所,长沙 410082
  • 收稿日期:2008-12-24 出版日期:2010-09-10 发布日期:2010-09-16
  • 作者简介:龙照,男,1982年生,硕士,工程师,主要从事岩土工程勘察设计工作。

A simplified method for calculating critical anchorage length of bolt

LONG Zhao1,ZHAO Ming-hua2,ZHANG En-xiang1,LIU Jun-long1   

  1. 1. Cscec Aecom Consultants Co., Ltd., Lanzhou 730000, China; 2. Institute of Geotechnical Engineering, Hunan University, Changsha 410082, China
  • Received:2008-12-24 Online:2010-09-10 Published:2010-09-16

摘要:

假定锚固体与周围岩土体之间剪应力呈倒三角形分布,计算出锚固体顶端弹性位移;基于锚杆抗拔承载机制及变形特性分析,锚固体周围岩土体变形分析采用与抗拔桩类似的剪切位移模型,得到锚固体周围紧贴锚固体表面岩土体的位移;然后根据锚固体与周围岩土体之间的位移协调原理,推导出了锚杆临界锚固长度的简化计算公式。工程算例对比分析结果表明,其计算结果与实测值吻合较好,且计算公式简单易记,取值明确,适用于工程设计中估算锚杆临界锚固长度。

关键词: 锚杆, 临界锚固长度, 位移, 剪切位移法, 简化方法

Abstract:

On the supposition that the distribution of shearing force in inverted triangular form between anchorage-body and surrounding soil, the displacement of the top of anchorage-body was calculated. Based on the analysis of pull-out bearing mechanism and deformation characteristics of bolt, which is similar with anti-floating pile, a displacement of shear mode between anchorage-body and surrounding soil was used to calculating the displacement of the surrounding soil. Then, a simplified method for calculating the critical anchorage length of bolt was deduced according to the displacement coordination between anchorage-body and surrounding soil. Comparative analysis results of two engineering examples show that the calculated values by the presented method agree well with the measured data. Furthermore, the calculation formula is a simple and easily remembered one and it has a specific value range. And it is appropriated to estimating the critical anchorage length of bolt in engineering design.

Key words: bolt, critical anchorage length, displacement, shear displacement method, simplified method

中图分类号: 

  • TU 753
[1] 宋义敏, 张 悦, 许海亮, 王亚飞, 贺志杰. 基于非均匀特征的岩石蠕滑与黏滑变形演化研究[J]. 岩土力学, 2020, 41(2): 363-371.
[2] 邓涛, 林聪煜, 柳志鹏, 黄明, 陈文菁, . 大位移条件下水平受荷单桩的简明弹塑性计算方法[J]. 岩土力学, 2020, 41(1): 95-102.
[3] 王忠凯, 徐光黎. 盾构掘进、离开施工阶段对地表变形的 影响范围及量化预测[J]. 岩土力学, 2020, 41(1): 285-294.
[4] 郭院成, 李明宇, 张艳伟, . 预应力锚杆复合土钉墙支护体系增量解析方法[J]. 岩土力学, 2019, 40(S1): 253-258.
[5] 王体强, 王永志, 袁晓铭, 汤兆光, 王海, 段雪锋. 基于振动台试验的加速度积分位移方法可靠性研究[J]. 岩土力学, 2019, 40(S1): 565-573.
[6] 吴爽爽, 胡新丽, 章涵, 周昌, 龚辉, . 嵌岩桩负摩阻力现场试验与计算方法研究[J]. 岩土力学, 2019, 40(9): 3610-3617.
[7] 邓茂林, 易庆林, 韩蓓, 周剑, 李卓骏, 张富灵, . 长江三峡库区木鱼包滑坡地表变形规律分析[J]. 岩土力学, 2019, 40(8): 3145-3152.
[8] 许紫刚, 杜修力, 许成顺, 韩润波, 乔磊. 复杂断面地下结构地震反应分析的 广义反应位移法研究[J]. 岩土力学, 2019, 40(8): 3247-3254.
[9] 冯君, 王洋, 吴红刚, 赖冰, 谢先当, . 玄武岩纤维复合材料土层锚杆抗拔性能 现场试验研究[J]. 岩土力学, 2019, 40(7): 2563-2573.
[10] 申翃, 李晓, 雷美清, 徐文博, 余秀玲, . 剪力键支护体系的构想及模型试验研究[J]. 岩土力学, 2019, 40(7): 2574-2580.
[11] 言志信, 龙哲, 屈文瑞, 张森, 江平, . 地震作用下含软弱层岩体边坡锚固 界面剪切作用分析[J]. 岩土力学, 2019, 40(7): 2882-2890.
[12] 陈建旭, 宋文武, . 平动模式下挡土墙非极限主动土压力[J]. 岩土力学, 2019, 40(6): 2284-2292.
[13] 张 奎, 赵成刚, 李伟华. 海底软土层对海洋地基场地动力响应的影响[J]. 岩土力学, 2019, 40(6): 2456-2468.
[14] 徐 鹏, 蒋关鲁, 雷 涛, 刘 琪, 王智猛, 刘 勇, . 考虑填土强度的加筋土挡墙动位移计算[J]. 岩土力学, 2019, 40(5): 1841-1846.
[15] 徐 鹏, 蒋关鲁, 王 珣, 黄昊威, 黄 哲, 王智猛, . 面板对加筋土挡墙影响的离心模型试验研究[J]. 岩土力学, 2019, 40(4): 1427-1432.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 魏 丽,柴寿喜,蔡宏洲,王晓燕,李 敏,石 茜. 麦秸秆加筋材料抗拉性能的实验研究[J]. , 2010, 31(1): 128 -132 .
[2] 黄庆享,张 沛,董爱菊. 浅埋煤层地表厚砂土层“拱梁”结构模型研究[J]. , 2009, 30(9): 2722 -2726 .
[3] 荆志东,刘俊新. 红层泥岩半刚性基床结构动态变形试验研究[J]. , 2010, 31(7): 2116 -2121 .
[4] 汪 洋,唐雄俊,谭显坤,王元汉. 云岭隧道底鼓机理分析[J]. , 2010, 31(8): 2530 -2534 .
[5] 胡 琦,凌道盛,陈云敏. 基于Melan解的水平基床系数分析方法及工程运用[J]. , 2009, 30(1): 33 -39 .
[6] 张成平,张顶立,骆建军,王梦恕,吴介普. 地铁车站下穿既有线隧道施工中的远程监测系统[J]. , 2009, 30(6): 1861 -1866 .
[7] 王 军,曹 平,李江腾,刘业科. 降雨入渗对流变介质隧道边坡稳定性的分析[J]. , 2009, 30(7): 2158 -2162 .
[8] 张 渊,万志军,康建荣3,赵阳升. 温度、三轴应力条件下砂岩渗透率阶段特征分析[J]. , 2011, 32(3): 677 -683 .
[9] 侯 伟2,贾永刚1, 2,宋敬泰3,孟祥梅4,单红仙1, 2. 黄河三角洲粉质土海床临界起动切应力影响因素研究[J]. , 2011, 32(S1): 376 -0381 .
[10] 唐世斌,唐春安,李连崇,张永彬. 湿度扩散诱发的隧洞时效变形数值模拟研究[J]. , 2011, 32(S1): 697 -0703 .