›› 2010, Vol. 31 ›› Issue (9): 3019-3024.

• 测试技术 • 上一篇    

GPU通用计算模式在岩土工程中的应用

刘明贵,刘绍波,张国华   

  1. 中国科学院武汉岩土力学研究所,岩土力学与工程国家重点实验室,武汉 430071
  • 收稿日期:2009-01-12 出版日期:2010-09-10 发布日期:2010-09-16
  • 通讯作者: 刘绍波,男,1982年生,博士研究生,主要从事岩土工程类算法、软件、仪器等方面研究。 E-mail:hasia.hit@gmail.com
  • 作者简介:刘明贵,男,1957年生,研究员,博士生导师,主要从事岩土工程智能化检测方法及检测仪器、桩基神经网络计算等方面的研究工作。
  • 基金资助:

    武汉市重大创新活动专项(个人)(武人[2008]84号)。

Application of general-purpose computation on GPUs to geotechnical engineering

LIU Ming-gui,LIU Shao-bo,ZHANG Guo-hua   

  1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
  • Received:2009-01-12 Online:2010-09-10 Published:2010-09-16

摘要:

由于岩土工程地质条件的复杂性及其规模的不断增大,对大规模数值计算速度的要求越来越高。显卡核心单元(GPU)由于其硬件构造特殊,有着并行计算上的独特优势、高速浮点运算性能和超高的内存带宽,可以很好地解决大规模的科学计算速度问题。文中介绍了GPU与CPU的硬件构架差异,总结了多核CPU、工作站等方式发展的局限性及GPU在并行运算方面的优势,详细阐述了GPU各类计算模式的发展特点及其成果,展示了其在坝区渗透特性中随机微分方程加速求解过程中的优越性,探讨了采用GPU进行大规模岩土工程数值计算的应用前景。

关键词: GPGPU, CUDA Stream, OpenCL, 高性能计算, 岩土工程

Abstract:

Because of the complex geological conditions of geotechnical engineering and its increasing project scale, the requirements of the calculation speed for large-scale numerical simulation become more strict. Graphics processing unit (GPU), the core unit of graphics card, can solve this problem with the advantages of parallel computing, high-speed floating-point performance and high memory bandwidth. The hardware architecture differences between GPU and CPU are analyzed firstly. Then the advantages and disadvantages of CPU and GPU are summarized; the development and achievement of general-purpose computation on GPU are described in detail. Finally, an example about application of GPU to stochastic differential equations of permeability is given; the advantage of GPU is displayed and the application of GPU computing to geotechnical engineering is discussed.

Key words: GPGPU, CUDA, Stream, OpenCL, high-performance computing, geotechnical engineering

中图分类号: 

  • TU 443
[1] 赵强, 焦玉勇, 张秀丽, 谢壁婷, 王龙, 黄刚海, . 基于显式时间积分的球颗粒DDA计算方法[J]. 岩土力学, 2019, 40(11): 4515-4522.
[2] 范文亮,王余乐,魏奇科,杨朋超,李正良, . 岩土工程可靠度分析的改进四阶矩方法[J]. , 2018, 39(4): 1463-1468.
[3] 黄明华,赵明华,陈昌富. 锚固长度对锚杆受力影响分析及其临界值计算[J]. , 2018, 39(11): 4033-4041.
[4] 熊自明,卢 浩,王明洋,钱七虎,戎晓力,. 我国大型岩土工程施工安全风险管理研究进展[J]. , 2018, 39(10): 3703-3716.
[5] 方砚兵,苏永华,肖 旺,梁 斌. 基于子区间法的隐式功能函数非概率可靠性方法研究[J]. , 2017, 38(4): 1171-1178.
[6] 闫澍旺,林 澍,霍知亮,楚 剑,郭 伟,. 桶形基础液压下沉过程的耦合欧拉-拉格朗日有限元法分析[J]. , 2017, 38(1): 247-252.
[7] 付晓东,盛 谦,张勇慧,冷先伦, . 非连续变形分析(DDA)线性方程组的高效求解算法[J]. , 2016, 37(4): 1171-1178.
[8] 张友良,谭 飞,张礼仁,施明明. 岩土工程亿级单元有限元模型可扩展并行计算[J]. , 2016, 37(11): 3309-3316.
[9] 张 蕾 ,唐小松 ,李典庆 ,曹子君 , . 基于Copula函数的岩土结构物系统可靠度分析[J]. , 2016, 37(1): 193-202.
[10] 董威信,王翔南,王 远,于玉贞. 三维过渡等参单元在岩土工程有限元分析中的应用[J]. , 2015, 36(5): 1455-1462.
[11] 王 浩 ,覃卫民 ,焦玉勇 ,何 政,. 大数据时代的岩土工程监测——转折与机遇[J]. , 2014, 35(9): 2634-2641.
[12] 付晓东,盛 谦,张勇慧. 基于OpenMP的非连续变形分析并行计算方法[J]. , 2014, 35(8): 2401-2407.
[13] 沈 辉 ,罗先启 ,郑安兴 ,毕金锋 ,翁永红,. 拱坝联合坝肩岩体三维计算模型构建[J]. , 2014, 35(5): 1455-1460.
[14] 左育龙 ,朱合华 ,李晓军 . 岩土工程可靠度分析的神经网络四阶矩法[J]. , 2013, 34(2): 513-518.
[15] 李元松 ,余顺新 ,邓 涛 . EN1997-1设计方法与国内规范设计方法对比[J]. , 2012, 33(S2): 105-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 吴振君,王水林,汤 华,王 威,葛修润. 边坡可靠度分析的一种新的优化求解方法[J]. , 2010, 31(3): 713 -718 .
[2] 李新平,代翼飞,刘金焕,曾 明,刘立胜,张开广. 钢管爆炸破坏的数值模拟分析与试验研究[J]. , 2009, 30(S1): 5 -9 .
[3] 曹文贵,赵 衡,张永杰,张 玲. 考虑体积变化影响的岩石应变软硬化损伤本构模型及参数确定方法[J]. , 2011, 32(3): 647 -654 .
[4] 王应铭,李肖伦. 郑西客专陕西段路基湿陷性黄土地基处理简介[J]. , 2009, 30(S2): 283 -286 .
[5] 张 平,房营光,闫小庆,何智威. 不同干燥方法对重塑膨润土压汞试验用土样的影响试验研究[J]. , 2011, 32(S1): 388 -0391 .
[6] 叶 飞 ,何 川 ,王士民. 盾构隧道施工期衬砌管片受力特性及其影响分析[J]. , 2011, 32(6): 1801 -1807 .
[7] 许福乐 ,王恩元 ,宋大钊 ,宋晓艳 ,魏明尧. 煤岩破坏声发射强度长程相关性和多重分形分布研究[J]. , 2011, 32(7): 2111 -2116 .
[8] 牛 雷,姚仰平,崔文杰,万 征. 超固结非饱和土本构关系的三维化方法[J]. , 2011, 32(8): 2341 -2345 .
[9] 张安兵 ,高井祥 ,张兆江. 基于多尺度的老采空区上方建筑物变形分析及预报[J]. , 2011, 32(8): 2423 -2428 .
[10] 萧富元 ,王建力 ,邵厚洁. 深埋脆性岩石力学参数评估与变形特性探讨[J]. , 2011, 32(S2): 109 -114 .