›› 2010, Vol. 31 ›› Issue (11): 3469-3474.

• 基础理论与实验研究 • 上一篇    下一篇

突出危险煤渗透性变化的影响因素探讨

王登科1,刘 建2,尹光志3,韦立德2   

  1. 1. 河南理工大学 河南省瓦斯地质与瓦斯治理重点实验室省部共建国家重点实验室培育基地,河南 焦作454000; 2. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,武汉 430071;3. 重庆大学 资源及环境科学学院,重庆 400044
  • 收稿日期:2010-04-08 出版日期:2010-11-10 发布日期:2010-11-24
  • 作者简介:王登科,男,1980年生,博士,主要从事岩石力学与矿业工程研究。
  • 基金资助:

    国家自然科学基金资助项目(No. 40672192,No. 40772193,No. 50479072);国家重点基础研究发展计划(973计划)项目(No. 2009CB724603)。

Research on influencing factors of permeability change for outburst-prone coal

WANG Deng-ke1,LIU Jian2,YIN Guang-zhi3,WEI Li-de2   

  1. 1. The Henan Key Laboratory of Gas Geology and Gas Control - Cultivation Base of State Key Laboratory Built Together by the Ministry of Science and Technology of P.R.China and Henan Province, Hennan Polytechnic University, Jiaozuo, Henan 454000, China; 2. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; 3. College of Resources and Environmental Sciences, Chongqing University, Chongqing 400044, China
  • Received:2010-04-08 Online:2010-11-10 Published:2010-11-24

摘要:

通过对突出危险煤渗透性试验研究,系统分析了不同围压、不同瓦斯压力和不同应力-应变状态条件下突出煤样的渗透特性,分别建立了突出危险煤的渗透性与围压、瓦斯压力和应力-应变等主要控制因素之间的定性和定量关系,探讨了不同载荷条件下突出危险煤渗透性的控制机制和变化规律。研究结果表明,载荷条件对突出危险煤的渗透性具有重要影响:(1) 在固定瓦斯压力条件下,突出危险煤样的渗透率随围压的增大而减小,且服从指数函数变化规律。(2) 在固定围压条件下,受Klinkenberg效应影响,渗透率与瓦斯压力之间大致呈“V”字型变化;Klikenberg效应发生在瓦斯压力p < 1 MPa的范围内。(3) 在三轴压缩下的应力-应变全过程中,不同载荷条件下突出危险煤样的渗透率-应变曲线变化趋势几乎一致,且都呈“V”字型走势;在微裂隙闭合和弹性变形阶段,煤样渗透率随应力增大而减小;进入屈服阶段后,渗透率达到最小值并在峰值强度到达之前完成反超过程;峰值强度之后渗透率持续增大直至试验结束;煤样渗透率反超后的变化要较反超前变化平缓。

关键词: 突出危险煤, 三轴压缩, 渗透性, 影响因素

Abstract:

According to permeability test investigation of outburst-prone coal, permeability properties of outburst-prone coal specimens are analyzed systematically for different confining pressures, different gas pressures, and different stress-strain conditions. Quantitative and qualitative relations between outburst-prone coal permeability and confining pressure, gas pressure and stress-strain curve are established respectively. The controlling mechanism and changing law of outburst-prone coal permeability under variable loading conditions are discussed. The results show that the loading condition has an important impact on outburst-prone coal permeability, and the details are: (1) For fixed gas pressure condition, outburst-prone coal permeability decreases with increasing of confining pressure; and the decreasing rule obeys an exponential law. (2) For fixed confining pressure condition, the relation between permeability and gas pressure is showed a “V” curve approximately in shape affected by Klinkenberg effect, which happens in the gas pressure range of p < 1 MPa. (3) During the whole stress-strain process under triaxial compression, the change trends of outburst-prone coal permeability versus strain curve for different loading conditions are almost uniform, which are showed a “V” curve. At the stage of microfissure closing and elastic deformation, the coal specimen permeability decreases with the increasing of stress; after entering into the yield stage, the coal specimen permeability reaches the minimum and anti-exceeding is accomplished before reaching the peak strength. The permeability increases continuously until the end of test after reaching the peak strength. The outburst-prone coal permeability after anti-exceeding changes more mildly than before anti-exceeding.

Key words: outburst-prone coal, triaxial compression, permeability, influencing factor

中图分类号: 

  • TD 822
[1] 高峰, 曹善鹏, 熊信, 周科平, 朱龙胤, . 冻融循环作用下受荷青砂岩的脆性演化特征[J]. 岩土力学, 2020, 41(2): 445-452.
[2] 刘希灵, 刘周, 李夕兵, 韩梦思. 单轴压缩与劈裂荷载下灰岩声发射b值特性研究[J]. 岩土力学, 2019, 40(S1): 267-274.
[3] 周翠英, 梁宁, 刘镇, . 红层软岩压缩破坏的分形特征与级联失效过程[J]. 岩土力学, 2019, 40(S1): 21-31.
[4] 李玲, 刘金泉, 刘造保, 刘桃根, 王伟, 邵建富, . 砂-黏土混合物高压压实性能试验研究[J]. 岩土力学, 2019, 40(9): 3502-3514.
[5] 沈泰宇, 汪时机, 薛乐, 李贤, 何丙辉, . 微生物沉积碳酸钙固化砂质黏性紫色土试验研究[J]. 岩土力学, 2019, 40(8): 3115-3124.
[6] 尹黎阳, 唐朝生, 谢约翰, 吕超, 蒋宁俊, 施斌, . 微生物矿化作用改善岩土材料性能的影响因素[J]. 岩土力学, 2019, 40(7): 2525-2546.
[7] 李晓照, 戚承志, 邵珠山, 屈小磊, . 基于细观力学脆性岩石剪切特性演化模型研究[J]. 岩土力学, 2019, 40(4): 1358-1367.
[8] 李 崴, 王者超, 毕丽平, 刘 杰, . 辐射流条件下裂隙岩体渗透性表征单元体尺寸 与等效渗透系数[J]. 岩土力学, 2019, 40(2): 720-727.
[9] 胡明鉴, 张晨阳, 崔翔, 李焜耀, 唐健健, . 钙质砂中毛细水高度与影响因素试验研究[J]. 岩土力学, 2019, 40(11): 4157-4164.
[10] 钟祖良, 别聪颖, 范一飞, 刘新荣, 罗亦琦, 涂义亮, . 土石混合体注浆扩散机制及影响因素试验研究[J]. 岩土力学, 2019, 40(11): 4194-4202.
[11] 彭守建, 王 哲, 许 江, 大久保诚介, 汤 杨, . 三轴压缩条件下饱水岩石破坏后区荷载 速率效应试验研究[J]. 岩土力学, 2018, 39(S2): 72-82.
[12] 崔德山, 陈 琼, 项 伟, 王菁莪, . 黄土坡滑坡饱和滑带土三轴压缩应力松弛试验研究[J]. 岩土力学, 2018, 39(S2): 209-216.
[13] 董金玉,王 闯,周建军,杨继红,李严威,. 泡沫改良砂卵石土的试验研究[J]. , 2018, 39(S1): 140-148.
[14] 左宇军,孙文吉斌,邬忠虎,许云飞,. 渗透压–应力耦合作用下页岩渗透性试验[J]. , 2018, 39(9): 3253-3260.
[15] 杨建民,霍王文,. 渗透性水平向各向异性导致椭圆形地面沉降漏斗的一个性质[J]. , 2018, 39(8): 2960-2976.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李英勇,张顶立,张宏博,宋修广. 边坡加固中预应力锚索失效机制与失效效应研究[J]. , 2010, 31(1): 144 -150 .
[2] 李 晶,缪林昌,钟建驰,冯兆祥. EPS颗粒混合轻质土反复荷载下变形和阻尼特性[J]. , 2010, 31(6): 1769 -1775 .
[3] 梁健伟,房营光,谷任国. 极细颗粒黏土渗流的微电场效应分析[J]. , 2010, 31(10): 3043 -3050 .
[4] 李秀珍,王成华,邓宏艳. DDA法和Fisher判别法在潜在滑坡判识中的应用比较[J]. , 2011, 32(1): 186 -192 .
[5] 孔祥兴,夏才初,仇玉良,张丽英,龚建伍. 平行小净距盾构与CRD法黄土地铁隧道施工力学研究[J]. , 2011, 32(2): 516 -524 .
[6] 江学良 ,杨 慧 ,曹 平. 基于SURPAC模型的采空区与露采边坡相互影响的FLAC3D分析[J]. , 2011, 32(4): 1234 -1240 .
[7] 陈力华 ,林 志 ,李星平. 公路隧道中系统锚杆的功效研究[J]. , 2011, 32(6): 1843 -1848 .
[8] 陈立文,孙德安. 不同应力路径下水土耦合超固结黏土分叉分析[J]. , 2011, 32(10): 2922 -2928 .
[9] 赵明华,雷 勇,张 锐. 岩溶区桩基冲切破坏模式及安全厚度研究[J]. , 2012, 33(2): 524 -530 .
[10] 王 宇 ,贾志刚 ,李 晓 ,汪 灿 ,余宏明 . 边坡模糊随机可靠性分析的模糊点估计法[J]. , 2012, 33(6): 1795 -1800 .