›› 2009, Vol. 30 ›› Issue (1): 191-195.

• 基础理论与实验研究 • 上一篇    下一篇

软黏土层一维有限应变固结的超静孔压消散研究

陈敬虞1, 2,龚晓南1,邓亚虹3   

  1. 1.浙江大学 岩土工程研究所,杭州 310027;2.浙江嘉兴学院 建筑工程学院,浙江 嘉兴 314001; 3.长安大学 国土资源部岩土工程开放研究实验室,西安 710054
  • 收稿日期:2007-05-28 出版日期:2009-01-10 发布日期:2011-01-14
  • 作者简介:陈敬虞,男,1964年生,副教授,博士研究生,主要从事岩土力学及工程应用研究。
  • 基金资助:

    国家自然科学基金(No. 50578143)资助项目。

Research on dissipation of excess pore water pressure in one-dimensional finite strain consolidation of soft clays

CHEN Jing-yu 1, 2 , GONG Xiao-nan1, DENG Ya-hong3   

  1. 1.Institute of Geotechnical Engineering , Zhejiang University, Hangzhou 310027, China; 2.School of Civil Engineering and Architecture, Zhejiang Jiaxing College, Jiaxing 314001, China; 3. Open Research Laboratory of Geotechnical Engineering, Ministry of Land and Resources, Changan University, Xi'an 710054, China
  • Received:2007-05-28 Online:2009-01-10 Published:2011-01-14

摘要:

根据土力学固结理论计算分析软黏土层固结过程的超静孔隙水压力值,确定软黏土体固结过程的强度增长,对排水固结法处理软土地基至关重要。软黏土层固结过程中土体变形较大时,有限应变固结理论和小应变固结理论计算分析软黏土固结所得结果差异较大。利用非线性有限元法及程序,通过对软黏土层固结工程算例的计算结果分析,研究了有限应变固结理论和小应变固结理论计算分析软黏土层一维固结超静孔压值消散的差异;探讨了软黏土体一维固结过程中,几何非线性、土体渗透性变化和压缩性变化对超静孔隙水压力消散的影响。研究结果表明,当土体的变形较大时,有限应变固结理论计算出的超静孔压要比小应变固结理论得到的值消散的更快。考虑土体固结过程中渗透性的变化时,超静孔压消散变慢;可用软黏土渗透性变化指数ck 反映渗透性变化对超静孔压消散的影响,渗透性变化指数ck值越小、超静孔压消散越慢。固结过程中软黏土压缩性的大小及变化也影响超静孔压的消散,可用软黏土的压缩指数cc反映固结过程中压缩性的大小及变化对超静孔压消散的影响,软黏土的压缩指数cc越小,固结过程软黏土层中的超静孔压消散越快。

关键词: 软黏土, 一维固结, 有限应变, 小应变, 超静孔压消散

Abstract:

It is very important for soft clay foundation treatment by consolidation that to calculate and analyse dissipation of excess pore water pressure in the process of soft clay consolidation according to the consolidation theory of soil mechanics, and to estimate increase of shear strength of soft clay. When the deformation of soft clay layer in consolidation is large, the consolidation analysis results of finite strain consolidation theory are different from those of small strain consolidation theory. Using the nonlinear finite element method and program and analyzing computational results of engineering examples of soft clay layer consolidation, this paper studies the differences of dissipation of excess pore water pressure which are obtained from finite strain consolidation theory and small strain consolidation theory, and studies effects of geometrical nonlinearity, variable permeability and variable compressibility on dissipation of excess pore water pressure in the process of one-dimensional soft clay layer consolidation. The research results show that the dissipation of excess pore water pressure obtained from finite strain consolidation theory is faster than that obtained from small strain consolidation theory,as the deformation of soft clay layer in consolidation is large. The dissipation of excess pore water pressure becomes slower when the variation of permeability of soft clay is taken into account; the permeability change index ck can represent the effect of variation of permeability on the dissipation of excess pore water; the smaller the ck is, the slower the dissipation of excess pore water is. The value and the variation of compressibility of soft clay also have effect on the dissipation of excess pore water pressure is; the compressibility change index ck can represent the effect of the value and the variation of permeability on the dissipation of excess pore water pressure; the smaller the cc is, the faster the dissipation of excess pore water pressure is.

Key words: soft clay, one-dimensional consolidation, finite strain, small strain, dissipation of excess pore water pressure

中图分类号: 

  • 软黏土
[1] 孙红, 宋春雨, 滕慕薇, 葛修润. 加荷条件下软黏土的孔隙演化特征[J]. 岩土力学, 2020, 41(1): 141-146.
[2] 戴国亮, 朱文波, 郭晶, 龚维明, 赵学亮, . 软黏土中吸力式沉箱基础竖向抗拔承载 特性试验研究[J]. 岩土力学, 2019, 40(S1): 119-126.
[3] 罗庆姿, 陈晓平, 袁炳祥, 冯德銮, . 柔性侧限条件下软土的变形特性及固结模型[J]. 岩土力学, 2019, 40(6): 2264-2274.
[4] 童立红, 王 珏, 郭生根, 朱怀龙, 徐长节, . 变荷载下连续排水边界黏弹性地基 一维固结性状分析[J]. 岩土力学, 2019, 40(5): 1862-1868.
[5] 夏唐代, 郑晴晴, 陈秀良, . 基于累积动应力水平的间歇加载下超孔压预测[J]. 岩土力学, 2019, 40(4): 1483-1490.
[6] 谭国宏, 肖海珠, 杜 勋, 胡文军. 大跨度公铁合建斜拉桥主塔沉井基础沉降变形分析[J]. 岩土力学, 2019, 40(3): 1113-1120.
[7] 蒙宇涵, 陈征, 冯健雪, 李红坡, 梅国雄, . 初始孔压非均布下一维地基砂垫层优化研究[J]. 岩土力学, 2019, 40(12): 4793-4800.
[8] 冯凌云, 朱斌, 代加林, 孔德琼, . 深海管道水平向管−土相互作用 大变形连续极限分析[J]. 岩土力学, 2019, 40(12): 4907-4915.
[9] 雷华阳, 刘广学, 周 骏, . 吹填场区双层软黏土地基承载特性及破坏模式[J]. 岩土力学, 2019, 40(1): 260-268.
[10] 时 刚,刘忠玉,李永辉. 循环荷载作用下考虑非达西渗流的软黏土一维流变固结分析[J]. , 2018, 39(S1): 521-528.
[11] 程星磊,王建华,王哲学,. 软黏土中吸力锚循环失稳过程的模型试验[J]. , 2018, 39(9): 3285-3293.
[12] 陈超斌,叶冠林. 基于LVDT的小应变三轴仪研制及其软土试验应用[J]. , 2018, 39(6): 2304-2310.
[13] 周亚东,邓 安,鹿 群, . 非饱和土一维大变形固结模型[J]. , 2018, 39(5): 1675-1682.
[14] 林清辉,严佳佳,董 梅,朱剑锋,. 大主应力方向及中主应力系数对重塑黄土小应变刚度特性影响试验研究[J]. , 2018, 39(4): 1369-1376.
[15] 闫澍旺,张京京,田英辉,陈 浩,. 等向固结饱和黏土卸载孔压特性的试验与理论研究[J]. , 2018, 39(3): 775-781.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨自友,顾金才,杨本水,陈安敏,徐景茂. 锚杆对围岩的加固效果和动载响应的数值分析[J]. , 2009, 30(9): 2805 -2809 .
[2] 刘清秉,项 伟,张伟锋,崔德山. 离子土壤固化剂改性膨胀土的试验研究[J]. , 2009, 30(8): 2286 -2290 .
[3] 况雨春,伍开松,杨迎新,马德坤. 三牙轮钻头破岩过程计算机仿真模型[J]. , 2009, 30(S1): 235 -238 .
[4] 陈智强,张永兴,周检英. 基于数字散斑技术的深埋隧道围岩岩爆倾向相似材料试验研究[J]. , 2011, 32(S1): 141 -148 .
[5] 杜文琪,王 刚. 土工结构地震滑动位移统计分析[J]. , 2011, 32(S1): 520 -0525 .
[6] 许振浩 ,李术才 ,李利平 ,侯建刚 ,隋 斌 ,石少帅. 基于层次分析法的岩溶隧道突水突泥风险评估[J]. , 2011, 32(6): 1757 -1766 .
[7] 魏厚振,颜荣涛,陈 盼,田慧会,吴二林,韦昌富. 不同水合物含量含二氧化碳水合物砂三轴试验研究[J]. , 2011, 32(S2): 198 -203 .
[8] 温世清 ,刘汉龙 ,陈育民. 浆固碎石桩单桩荷载传递特性研究[J]. , 2011, 32(12): 3637 -3641 .
[9] 巩思园,窦林名,何 江,贺 虎,陆菜平,牟宗龙. 深部冲击倾向煤岩循环加卸载的纵波波速与应力关系试验研究[J]. , 2012, 33(1): 41 -47 .
[10] 张乐文 ,张德永 ,邱道宏. 径向基函数神经网络在地应力场反演中的应用[J]. , 2012, 33(3): 799 -804 .