›› 2009, Vol. 30 ›› Issue (4): 1041-1045.

• 岩土工程研究 • 上一篇    下一篇

盾构隧道管片上浮问题研究

肖明清1, 2,孙文昊2,韩向阳2   

  1. 1. 西南交通大学 土木工程学院,成都 610031; 2. 中铁第四勘察设计院集团有限公司,武汉 430063
  • 收稿日期:2007-08-29 出版日期:2009-04-10 发布日期:2011-01-30
  • 作者简介:肖明清,男,1970年生,博士研究生,教授级高工,主要从事水底隧道及高速铁路隧道的设计和研究工作。

Research on upward moving of segments of shield tunel

XIAO Ming-qing 1,2,SUN Wen-hao2,HAN Xiang-yang2   

  1. 1. School of Civil Engineering , Southwest Jiaotong University, Chengdu 610031, China; 2. China Railway Siyuan Survey and Design Group Co., Ltd, Wuhan 430063, China
  • Received:2007-08-29 Online:2009-04-10 Published:2011-01-30

摘要:

盾构隧道施工过程中衬砌管片上浮问题是客观存在的,且一直是较难解决的问题之一,而大直径盾构隧道的上浮问题表现的更为突出。应用有限元法,对地层材料的物理力学性质、注浆材料的性质等影响盾构衬砌环上浮的因素进行了分析。根据分析结果,结合对衬砌结构在施工过程中受力状态的分析,对衬砌环上浮的原因进行了阐述,据此针对大直径盾构隧道的特点,提出了施工、设计过程中控制衬砌管片上浮的对策和措施,可为盾构隧道的施工和设计提供参考。

关键词: 盾构隧道, 管片, 上浮

Abstract:

Engineering practice shows that it is an objective problem of upward moving of tunnel segments in the construction process, especially in the large-diameter shield tunnel , which is difficult to solve. The factors affecting the upward moving of shield tunnel lining is analyzed by finite element method(FEM), such as the physico-mechanical properties of stratum material , and the properties of grouting material. According to the finite element analysis results and the state of the lining structure in the construction process, the reasons for the upward moving of shield tunnel segments are expounded. Based on the characteristics of large-diameter shield tunnel , the policies and measures are put forward to control the upward moving of shield tunnel segments in the construction process, which can provide some reference to the design and construction of the shield tunnel.

Key words: shield tunnel, segments, upward moving

中图分类号: 

  • U 451
[1] 魏纲, 张鑫海, 林心蓓, 华鑫欣, . 基坑开挖引起的旁侧盾构隧道横向受力变化研究[J]. 岩土力学, 2020, 41(2): 635-644.
[2] 杨振兴, 陈健, 孙振川, 游永锋, 周建军, 吕乾乾, . 泥水平衡盾构用海水泥浆的改性试验研究[J]. 岩土力学, 2020, 41(2): 501-508.
[3] 章定文, 刘志祥, 沈国根, 鄂俊宇, . 超大直径浅埋盾构隧道土压力实测分析 及其计算方法适用性评价[J]. 岩土力学, 2019, 40(S1): 91-98.
[4] 张治国, 李胜楠, 张成平, 王志伟, . 考虑地下水位升降影响的盾构施工诱发地层 变形和衬砌响应分析[J]. 岩土力学, 2019, 40(S1): 281-296.
[5] 黄大维, 周顺华, 冯青松, 罗锟, 雷晓燕, 许有俊, . 地表均布超载作用下盾构隧道上覆土层 竖向土压力转移分析[J]. 岩土力学, 2019, 40(6): 2213-2220.
[6] 莫振泽, 王梦恕, 李海波, 钱勇进, 罗跟东, 王辉, . 粉砂地层中浓泥土压盾构泥膜效应引起的 孔压变化规律试验研究[J]. 岩土力学, 2019, 40(6): 2257-2263.
[7] 徐 平, 翟攀攀, 张天航, 董新平. 盾构隧道衬砌管片接头弯曲刚度类指数模型研究[J]. 岩土力学, 2018, 39(S2): 83-90.
[8] 姚爱军,张剑涛,郭海峰,郭彦非. 地铁盾构隧道上方基坑开挖卸荷-加载影响研究[J]. , 2018, 39(7): 2318-2326.
[9] 钟 宇,陈 健,陈国良,吴佳明, . 基于建筑信息模型技术的盾构隧道结构信息模型建模方法[J]. , 2018, 39(5): 1867-1876.
[10] 杨文波,陈子全,徐朝阳,晏启祥,何 川,韦 凯, . 盾构隧道与周围土体在列车振动荷载作用下的动力响应特性[J]. , 2018, 39(2): 537-545.
[11] 康 成, 梅国雄, 梁荣柱, 吴文兵, 方宇翔, 柯宅邦, . 地表临时堆载诱发下既有盾构隧道纵向变形分析[J]. 岩土力学, 2018, 39(12): 4605-4616.
[12] 李长俊,陈卫忠,杨建平,刘金泉, . 运营期水下盾构隧道管片接缝张开度变化规律[J]. , 2018, 39(10): 3783-3793.
[13] 魏 纲,林 雄,金 睿,丁 智,. 双线盾构施工时邻近地下管线安全性判别[J]. , 2018, 39(1): 181-190.
[14] 姜 燕,杨光华,陈富强,徐传堡,张玉成, . 湛江湾高水头跨海盾构隧道管片结构典型断面受力计算与监测反馈分析[J]. , 2018, 39(1): 275-286.
[15] 邱 里,柴能斌,朱 斌,倪伟杰,蒋 婕,. 回填软土中管道上拔试验及上浮承载力研究[J]. , 2017, 38(8): 2227-2233.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .
[2] 高广运,赵元一,高 盟,杨成斌. 分层土中群桩水平动力阻抗的改进计算[J]. , 2010, 31(2): 509 -515 .
[3] 黄 阜,杨小礼. 考虑渗透力和原始Hoek-Brown屈服准则时圆形洞室解析解[J]. , 2010, 31(5): 1627 -1632 .
[4] 卢 黎,张四平,张永兴,胡岱文,吴曙光. 压力型锚索力学机理现场试验研究[J]. , 2010, 31(8): 2435 -2440 .
[5] 王学武,许尚杰,党发宁,程素珍. 水位骤降时的非饱和坝坡稳定分析[J]. , 2010, 31(9): 2760 -2764 .
[6] 刘文白,周 健. 土工格栅与土界面作用特性试验研究[J]. , 2009, 30(4): 965 -970 .
[7] 熊 炜,周曾辉,余开彪,吴亚平,罗 炜. 基于弯曲路径的混凝土超声层析成像及其改进[J]. , 2011, 32(2): 629 -634 .
[8] 王光进,杨春和,张 超,马洪岭,孔祥云,侯克鹏. 超高排土场的粒径分级及其边坡稳定性分析研究[J]. , 2011, 32(3): 905 -913 .
[9] 李 敏,柴寿喜,王晓燕,魏 丽. 以强度增长率评价麦秸秆加筋盐渍土的加筋效果[J]. , 2011, 32(4): 1051 -1056 .
[10] 杨 骁,蔡雪琼. 考虑横向效应饱和黏弹性土层中桩的纵向振动[J]. , 2011, 32(6): 1857 -1863 .