›› 2011, Vol. 32 ›› Issue (2): 495-502.

• 岩土工程研究 • 上一篇    下一篇

基于Mindlin解的土压力位移计算模型

魏焕卫1, 2,杨 敏2,贾 强1,孙剑平1   

  1. 1.山东建筑大学 土木工程学院,济南 2500141;2.同济大学 地下建筑与工程系,上海 200092
  • 收稿日期:2010-05-22 出版日期:2011-02-10 发布日期:2011-02-16
  • 作者简介:魏焕卫,男,1974年生,博士研究生,副教授,主要从事岩土工程共同作用和变形控制设计。
  • 基金资助:

    建设部科技攻关计划(No. 2008-K2-30)。

Calculation model of soil pressure displacement based on Mindlin solution

WEI Huan-wei 1, 2, YANG Min2, JIA Qiang1, SUN Jian-ping1   

  1. 1. School of Civil Engineering, Shangdong Jianzhu University, Jinan 250014 China; 2. Department of Geotechnical Engineering, Tongji University, Shanghai 200092 China
  • Received:2010-05-22 Online:2011-02-10 Published:2011-02-16

摘要:

以不同土压力状态与静止土压力状态时的压力差值计算分布力,基于Mindlin应变解建立了任意土压力变化下的土体侧向位移计算模型,计算得到土体达到主动极限状态下土体位移和达到被动极限状态下的土体位移。通过编制的程序研究了不同计算参数对土体达到主(被)动极限状态下土体位移的影响规律,包括土的内摩擦角、黏聚力、计算深度、计算宽度等,研究了土体主动极限位移和达到被动极限位移相关性规律。通过模型试验的实测资料验证了土压力位移计算模型的有效性和合理性。利用计算模型可以得到不同位移限值要求下的侧向土压力,从而为不同工程中土压力的合理取值提供了理论依据。

关键词: 土压力, Mindlin应变解, 土体侧向位移, 极限状态, 相关性

Abstract:

The calculation model of soil pressure displacement is established based on Mindlin strain solution, that the difference of soil pressure between the calculated state and the static state is considered as the calculated distributed stress. The limited displacement of soil under active state of plastic equilibrium and that of soil under passive state of plastic equilibrium are both obtained with th model. The calculation program is programmed according to the calculation model to analyze the regulation of both the limited displacement of soil under active state and that of soil under passive state from some key parameters, including inner friction, cohesive force, calculated depth and calculated width. The measured data from a mdel test is used to illustrate the validity and rationality of the proposed model. The model can be used for calculating of soil pressure with different limited values of soil displacements, so as to provide a theorical basis.

Key words: soil pressure, Mindlin strain solution, soil lateral displacement, limited state, correlativity

中图分类号: 

  • TU 432
[1] 章定文, 刘志祥, 沈国根, 鄂俊宇, . 超大直径浅埋盾构隧道土压力实测分析 及其计算方法适用性评价[J]. 岩土力学, 2019, 40(S1): 91-98.
[2] 刘斯宏, 沈超敏, 毛航宇, 孙 屹. 堆石料状态相关弹塑性本构模型[J]. 岩土力学, 2019, 40(8): 2891-2898.
[3] 黄大维, 周顺华, 冯青松, 罗锟, 雷晓燕, 许有俊, . 地表均布超载作用下盾构隧道上覆土层 竖向土压力转移分析[J]. 岩土力学, 2019, 40(6): 2213-2220.
[4] 陈建旭, 宋文武, . 平动模式下挡土墙非极限主动土压力[J]. 岩土力学, 2019, 40(6): 2284-2292.
[5] 汪大海, 贺少辉, 刘夏冰, 张嘉文, 姚文博. 地层渐进成拱对浅埋隧道上覆土压力影响研究[J]. 岩土力学, 2019, 40(6): 2311-2322.
[6] 芮 瑞, 叶雨秋, 陈 成, 涂树杰. 考虑墙壁摩擦影响的挡土墙 主动土压力非线性分布研究[J]. 岩土力学, 2019, 40(5): 1797-1804.
[7] 邵生俊, 陈 菲, 邓国华, . 基于平面应变统一强度公式的结构性黄土填料 挡墙地震被动土压力研究[J]. 岩土力学, 2019, 40(4): 1255-1262.
[8] 唐德琪, 俞 峰, 陈奕天, 刘念武, . 既有−新增排桩双层支挡结构开挖模型试验研究[J]. 岩土力学, 2019, 40(3): 1039-1048.
[9] 刘 洋, 于鹏强. 刚性挡土墙平移模式的土拱形状 与主动土压力分析[J]. 岩土力学, 2019, 40(2): 506-516.
[10] 梁 波, 厉彦君, 凌学鹏, 赵宁雨, 张青松, . 离心模型试验中微型土压力盒土压力测定[J]. 岩土力学, 2019, 40(2): 818-826.
[11] 张业勤, 陈保国, 孟庆达, 徐昕, . 减载条件下高填方涵洞受力机制及基底压力[J]. 岩土力学, 2019, 40(12): 4813-4818.
[12] 吴红刚, 武志信, 谢显龙, 牌立芳, . 土质边坡微型桩组合结构大型振动台试验研究[J]. 岩土力学, 2019, 40(10): 3844-3854.
[13] 武志信, 吴红刚, 赖天文, 李玉瑞, 牌立芳, . 微型桩加固土质边坡的动土压力响应 及其频谱特性研究[J]. 岩土力学, 2019, 40(10): 3909-3919.
[14] 田雨, 姚仰平, 路德春, 杜修力, . 基于修正应力法的横观各向同性摩尔-库仑 准则及被动土压力公式[J]. 岩土力学, 2019, 40(10): 3945-3950.
[15] 蒋承轩, 陈保国, 毛新颖, 佘明康. 柔性地基上高填方减载式涵洞受力特性[J]. 岩土力学, 2019, 40(1): 275-280.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 徐东升,汪 稔,孟庆山,胡明鉴. 海相淤泥软土地基强夯置换砂桩试验分析[J]. , 2009, 30(12): 3831 -3836 .
[2] 刘维正,石名磊. 长江漫滩相软土结构性特征及其工程效应分析[J]. , 2010, 31(2): 427 -432 .
[3] 杨磊,贺为民,周杨,张清明. 深层搅拌桩复合地基的优化设计[J]. , 2010, 31(8): 2575 -2579 .
[4] 赵剑明,温彦锋,刘小生,陈 宁,常亚屏,刘启旺,王 宏. 深厚覆盖层上高土石坝极限抗震能力分析[J]. , 2010, 31(S1): 41 -47 .
[5] 孟凡奇,李广杰,李 明,马建全,汪 茜. 逐步判别分析法在筛选泥石流评价因子中的应用[J]. , 2010, 31(9): 2925 -2929 .
[6] 迟福东,王进廷,金 峰,汪 强. 土-结构-流体动力相互作用的实时耦联动力试验[J]. , 2010, 31(12): 3765 -3770 .
[7] 艾智勇,成志勇. 层状地基中轴向受荷单桩的边界元法分析[J]. , 2009, 30(5): 1522 -1526 .
[8] 吴振君,葛修润. 求解边坡矢量和安全系数的条分法[J]. , 2009, 30(8): 2337 -2342 .
[9] 刘海宁,于怀昌,刘汉东,王思敬,王四巍. PS加固黄土力学特性试验研究[J]. , 2009, 30(S2): 93 -96 .
[10] 刘积魁 ,方 云 ,刘 智 ,刘建辉 ,王晓东. 钓鱼城遗址始关门破坏机制研究与 FLAC3D地震动力响应模拟[J]. , 2011, 32(4): 1249 -1254 .