›› 2011, Vol. 32 ›› Issue (2): 559-563.

• 数值分析 • 上一篇    下一篇

基于潘氏极大值原理的边坡稳定性的整体分析法

杨召亮1,孙冠华2,郑 宏1, 2   

  1. 1.三峡大学 三峡库区地质灾害教育部重点实验室,湖北 宜昌 443002; 2.中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,武汉 430071
  • 收稿日期:2009-11-07 出版日期:2011-02-10 发布日期:2011-02-16
  • 作者简介:杨召亮,男,1983年生,硕士研究生,主要从事边坡稳定性分析分析方面的研究工作。
  • 基金资助:

    国家自然科学基金(No. 50779031);国家杰出青年基金(No. 50925933)资助。

Global method for stability analysis of slopes based on Pan’s maximum principle

YANG Zhao-liang1, SUN Guan-hua2, ZHENG Hong 1, 2   

  1. 1. Key Laboratory of Geological Hazards in Three Gorges Reservoir of Ministry of Education, China Three Gorges University, Yichang, Hubei 443002, China; 2. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
  • Received:2009-11-07 Online:2011-02-10 Published:2011-02-16

摘要:

基于整体分析法和潘家铮最大值原理,建立了求解给定滑面安全系数的非线性优化模型。该模型将安全系数和滑面法向应力视为独立变量,目标函数就是安全系数本身,约束条件包括平衡方程、滑面法向应力和条间推力不负,以及推力线位于滑体之内。由于目标函数又仅是线性函数,且约束函数至多是二次多项式函数,所以该模型的非线性程度较低,具有良好的收敛性,可利用经典的优化算法进行求解。

关键词: 边坡稳定性, 极限平衡法, 非线性优化问题, 潘家铮最大值原理

Abstract:

On the basis of global analysis procedure and PAN Jia-zheng’s maximum principle for the stability analysis of slopes, a nonlinear optimum model is set up for calculating the factor of safety, which takes as independent variables the factor of safety as well as the normal stress on the slip surface. The objective function is just the factor of safety. The constraint conditions include that (1) the equilibrium equations are satisfied; (2) the normal stress and the interslice thrust are not negative; and (3) the thrust line is within the slip body. Since the objective function is linear and the constraint functions are polynomials of at most degree two, the model has weaker nonlinearity, enjoys a large scope of convergence, and can be solved by means of the conventional optimization algorithms.

Key words: slope stability, limit equilibrium method, nonlinear optimization problem, Pan’s maximum principle

中图分类号: 

  • TU 473
[1] 苏永华, 李诚诚. 强降雨下基于Green-Ampt模型的边坡稳定性分析[J]. 岩土力学, 2020, 41(2): 389-398.
[2] 李书兆, 王忠畅, 贾 旭, 贺林林, . 软黏土中张紧式吸力锚循环承载力简化计算方法[J]. 岩土力学, 2019, 40(5): 1704-1712.
[3] 余 国, 谢谟文, 郑正勤, 覃事河, 杜 岩, . 基于GIS的边坡稳定性计算方法研究[J]. 岩土力学, 2019, 40(4): 1397-1404.
[4] 夏侯云山, 张抒, 唐辉明, 刘晓, 吴琼, . 考虑参数空间变异结构的结构化交叉约束 随机场模拟方法研究[J]. 岩土力学, 2019, 40(12): 4935-4945.
[5] 唐洪祥, 韦文成. 耦合强度各向异性与应变软化的边坡稳定 有限元分析[J]. 岩土力学, 2019, 40(10): 4092-4100.
[6] 代仲海,胡再强,尹小涛,吴振君,. 工程荷载作用下缓倾角反倾似层状岩质边坡变形稳定性分析[J]. , 2018, 39(S1): 412-418.
[7] 秦雨樵,汤 华,冯振洋,尹小涛,王东英, . 基于聚类分析的边坡稳定性研究[J]. , 2018, 39(8): 2977-2983.
[8] 闫澍旺,李 嘉,闫 玥,陈 浩,. 黏性土地基中竖向圆孔的极限稳定深度研究[J]. , 2018, 39(4): 1176-1181.
[9] 朱彦鹏,杨晓宇,马孝瑞,杨校辉,叶帅华, . 边坡稳定性分析双折减法的几个问题[J]. , 2018, 39(1): 331-338.
[10] 杨明辉,戴夏斌,赵明华,罗 宏. 曲线滑裂面下有限宽度填土主动土压力计算[J]. , 2017, 38(7): 2029-2035.
[11] 聂治豹,郑 宏,张 谭. 基于强度折减法确定边坡临界滑面的小波变换法[J]. , 2017, 38(6): 1827-1831.
[12] 刘振平,杨 波,刘 建,贺怀建,. 基于GRASS GIS与TIN滑动面的边坡三维极限平衡方法研究[J]. , 2017, 38(1): 221-228.
[13] 蒋泽锋 ,朱大勇,. 强降雨条件下具有张裂缝边坡临界滑动场[J]. , 2016, 37(S2): 25-34.
[14] 薛海斌,党发宁,尹小涛,丁卫华,刘海伟,. 非稳定渗流条件下非饱和土质边坡稳定性的矢量和分析法研究[J]. , 2016, 37(S1): 49-56.
[15] 王 双,李小春,石 露,刘召胜,. 物质点强度折减法及其在边坡中的应用[J]. , 2016, 37(9): 2672-2678.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘 晓,唐辉明,刘 瑜. 基于集对分析和模糊马尔可夫链的滑坡变形预测新方法研究[J]. , 2009, 30(11): 3399 -3405 .
[2] 胡大伟,周 辉,谢守益,张 凯,邵建富,冯夏庭. 大理岩破坏阶段Biot系数研究[J]. , 2009, 30(12): 3727 -3732 .
[3] 张春会,于永江,赵全胜. 非均匀煤岩渗流-应力弹塑性耦合数学模型及数值模拟[J]. , 2009, 30(9): 2837 -2842 .
[4] 刘俊岩,刘 燕,王海平. 考虑空间协同效应的排桩斜撑支护体系分段拆撑法研究[J]. , 2010, 31(9): 2854 -2860 .
[5] 朱建明,彭新坡,姚仰平,徐金海. SMP准则在计算煤柱极限强度中的应用[J]. , 2010, 31(9): 2987 -2990 .
[6] 原喜忠,李 宁,赵秀云,杨银涛. 东北多年冻土地区地基承载力对气候变化敏感性分析[J]. , 2010, 31(10): 3265 -3272 .
[7] 卢 正,姚海林,程 平,吴万平. 非均布列车荷载作用下软土路基的振动分析[J]. , 2010, 31(10): 3286 -3294 .
[8] 唐利民. 地基沉降预测模型的正则化算法[J]. , 2010, 31(12): 3945 -3948 .
[9] 尹光志,王登科,张东明,魏作安. 基于内时理论的含瓦斯煤岩损伤本构模型研究[J]. , 2009, 30(4): 885 -889 .
[10] 侯公羽,牛晓松. 基于Levy-Mises本构关系及D-P屈服准则的轴对称圆巷理想弹塑性解[J]. , 2009, 30(6): 1555 -1562 .