基础理论与实验研究

瓦斯抽采过程中孔壁的动态响应分析

展开
  • 1. 郑州大学 水利与环境学院,河南 郑州 450001;2. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,湖北 武汉 430071; 3. 浙江省地震局,浙江 杭州 310013
徐平,男,1977年生,博士,副教授,主要从事岩土动力学和瓦斯地质方面的研究工作。

收稿日期: 2013-09-26

  网络出版日期: 2018-06-13

基金资助

中国博士后科学基金资助项目(No. 2012M521509)。

Dynamic response of hole wall during coal-gas suction process

Expand
  • 1. School of Water and Environment, Zhengzhou University, Zhengzhou, Henan 450001, China; 2. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 3. Seismological Bureau of Zhejiang Province, Hangzhou, Zhejiang 310013, China

Received date: 2013-09-26

  Online published: 2018-06-13

摘要

将含瓦斯煤岩体简化为气饱和的各向同性均质体,基于混合物理论建立了含瓦斯煤岩体的物理方程、几何方程、连续方程和动力控制方程。瓦斯抽采孔的长度远大于直径,将瓦斯抽采过程中抽采负压引起的孔壁的动态响应问题简化为二维平面应变问题,借助Laplace变换和Laplace逆变换分别建立了相关问题的频域和时域解答。以河南省某煤矿的煤岩体瓦斯参数为例,对孔边的动态响应进行了数值计算,分析了无量纲径向位移、径向应力和环向应力等的变化规律,结果表明:径向位移和径向应力等动态响应主要集中在孔边的一定区域内,且该区域随着抽采时间的增大而扩大;孔壁产生波动较大的环向应力,且该环向应力随着抽采负压的增大而增大。

本文引用格式

徐 平 ,李小春 ,周新民, . 瓦斯抽采过程中孔壁的动态响应分析[J]. 岩土力学, 2015 , 36(1) : 123 -130 . DOI: 10.16285/j.rsm.2015.01.017

Abstract

The coal-rocks contain gas are assumed as gas saturated isotropic homogeneous media. The physical equations, geometric equations, continuity equations and dynamic control equations about the coal-rocks are established using the mixture theory. The length of the gas suction hole is much larger than the diameter. The dynamic response of gas suction hole in the coal-rock due to the action of negative suction pressures during the suction process can be simplified into a two-dimensional initial-boundary problem. The theoretical solutions in frequency domain and time domain are respectively derived with Laplace transform and inverse Laplace transform. The parameters of coal rocks and gas in a mine of Henan province are taken as examples. The dynamic response near the hole wall is numerically calculated. The dimensionless radial displacements, radial stresses and circumferential stresses are analyzed. Finally, some conclusions are drawn as follows. The dimensionless radial displacements and stresses are mainly concentrated at a local area near the gas suction hole. The area increases with the suction time. Large and volatile circumferential stresses are generated at the hole wall. They increase as the negative suction pressures increase.
文章导航

/