数值分析

基于精确缩尺的颗粒材料流变研究

展开
  • 1. 武汉大学 水资源与水电工程科学国家重点试验室,湖北 武汉 430072;2. 武汉大学 水工岩石力学教育部重点试验室,湖北 武汉 430072
易颖,女,1992年生,硕士研究生,主要从事高坝结构数值仿真方面的研究工作。

收稿日期: 2015-04-13

  网络出版日期: 2018-06-09

基金资助

国家自然科学基金(No.51379161,No.51322905,No.51509190,No.51579193);中国博士后科学基金面上资助(No.2015M572195)。

Study of rheological behaviors of granular materials based on exact scaling laws

Expand
  • 1. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei 430072, China; 2. Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering of Education Ministry, Wuhan University, Wuhan, Hubei 430072, China

Received date: 2015-04-13

  Online published: 2018-06-09

Supported by

This work was supported by the National Natural Science Foundation of China (51379161, 51322905, 51509190 and 51579193) and China Postdoctoral Science Foundation (2015M572195).

摘要

基于Feng Y T提出的精确缩尺方法,即根据几何相似、静力相似、动力相似3个相似原理建立一套缩尺准则,使得缩尺前后模型的力学响应保持一致。首次将该理论应用于颗粒材料的流变分析当中,采用Burgers黏塑性蠕变模型,引入流变参数,在原缩尺准则上进行理论推导,得到在二维和三维条件下的缩尺准则;其次在理论推导的基础上进行数值仿真验证。研究结果表明:严格按照拟定的缩尺准则选取参数后,缩尺后模型的力学响应能够保证和原尺寸模型完全一致,计算误差在3%以内,同时简要探讨了时间步长、黏性系数、颗粒数目、比尺数对数值试验的影响,为数值试验中相关参数的选取以及如何让数值模型反映材料真实的力学行为提供了有效参考。另外,由于缩尺模型采用与原模型相同的颗粒数目、颗粒形状、颗粒压实状态和比尺数,揭示了等比例缩尺对材料流变行为的影响。

本文引用格式

易 颖,周 伟,马 刚,杨利福,常晓林, . 基于精确缩尺的颗粒材料流变研究[J]. 岩土力学, 2016 , 37(6) : 1799 -1808 . DOI: 10.16285/j.rsm.2016.06.033

Abstract

This paper aims at establishing a set of scaling laws according to three similarity criteria of geometric similarity, mechanical similarity, dynamic similarity, under which a scaled discrete element model can exactly reproduce the prototypical problem. The method is based on the exact scaling laws of discrete element method proposed by Prof. Y. T. Feng. The scaling laws are then extended to the study of rheological behavior of granular materials. A detailed theoretical derivation is given based on the Burgers creep model. The rheological parameters are introduced to the model, and then we can gain the scaling laws in both two-dimensional and three-dimensional cases. Secondly, numerical simulation is conducted on the basis of the theoretical derivation. The results show that some parameters must be scaled to ensure the consistence of simulated results. The scaled discrete element model can exactly represent the original physical problem within the relative error of 3%. This paper also discusses the influence of the time step, viscosity coefficient, particle numbers and scale number on numerical simulation, which provides a good reference for parameters selecting in numerical simulations. Besides, because the scaled model has the same particle number, particle shape, particle compactness and scale number as the physical model, it can reveal the effect of proportional scaling on rheological behaviors.
文章导航

/