›› 2015, Vol. 36 ›› Issue (6): 1566-1572.doi: 10.16285/j.rsm.2015.06.006

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study of unfrozen water content of frozen soils by low-field nuclear magnetic resonance

TAN Long1,WEI Chang-fu1, 2,TIAN Hui-hui2,ZHOU Jia-zuo2,WEI Hou-zhen2   

  1. 1. College of Civil Engineering and Architecture, Guilin University of Technology, Guilin, Guangxi 541004, China; 2. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
  • Received:2014-02-11 Online:2015-06-11 Published:2018-06-14

Abstract: Unfrozen water contents of saturated soil with different soil types and different concentrations of NaCl are measured by low-field nuclear magnetic resonance (NMR) in freezing-thawing cycles. The distribution of unfrozen water in soil is discussed combining with T2 distribution curve from the microscopic viewpoint during freezing and thawing process. It is concluded from the experimental results that the freezing process can be divided into three stages: super-cooling stage, rapid decline stage and stable stage; while the thawing process can only be divided into two stages: stable stage and rapid melting stage, and there is no overheating phenomenon in thawing process. During the freezing process, water in large pore freezes firstly. In a sharp contrast, the pore ice in small pores melts firstly. Thermodynamic potential difference of pore water results in the sequence of phase change of pore water during the freezing-thawing process. In addition, the influence of soil type and ion concentration on unfrozen water and hysteresis during freezing-thawing process is analyzed and possible mechanisms for the hysteresis are discussed.

Key words: frozen soil, unfrozen water content, NMR, T2 distribution, hysteresis

CLC Number: 

  • TU 445
[1] CHENG Hao, TANG Hui-ming, WU Qiong, LEI Guo-ping, . An elasto-plasticity extended Cam-clay model for unsaturated soils using explicit integration algorithm in FEM with hydraulic hysteresis [J]. Rock and Soil Mechanics, 2020, 41(2): 676-686.
[2] LI Jie-lin, ZHU Long-yin, ZHOU Ke-ping, LIU Han-wen, CAO Shan-peng, . Damage characteristics of sandstone pore structure under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2019, 40(9): 3524-3532.
[3] WANG Shi-quan, WEI Ming-li, HE Xing-xing, ZHANG Ting-ting, XUE Qiang, . Study of water transfer mechanism during sediment solidification process based on nuclear magnetic resonance technology [J]. Rock and Soil Mechanics, 2019, 40(5): 1778-1786.
[4] LIANG Ke, CHEN Guo-xing, HE Yang, LIU Jing-ru, . An new method for calculation of dynamic modulus and damping ratio based on theory of correlation function [J]. Rock and Soil Mechanics, 2019, 40(4): 1368-1376.
[5] JIN Xiao, YANG Wen, MENG Xian-Hong, LEI Le-Le, . Deduction and application of unfrozen water content in soil based on electrical double-layer theory [J]. Rock and Soil Mechanics, 2019, 40(4): 1449-1456.
[6] JIANG Qiang-qiang, LIU Lu-lu, JIAO Yu-yong, WANG Hao, . Strength properties and microstructure characteristics of slip zone soil subjected to wetting-drying cycles [J]. Rock and Soil Mechanics, 2019, 40(3): 1005-1012.
[7] LI Xin, LIU En-long, HOU Feng, . A creep constitutive model for frozen soils considering the influence of temperature [J]. Rock and Soil Mechanics, 2019, 40(2): 624-631.
[8] XIE Kai-nan, JIANG De-yi, SUN Zhong-guang, SONG Zhong-qiang, WANG Jing-yi, YANG Tao, JIANG Xiang, . Influence of drying-wetting cycles on microstructure degradation of argillaceous sandstone using low field nuclear magnetic resonance [J]. Rock and Soil Mechanics, 2019, 40(2): 653-659.
[9] JIANG De-yi, ZHANG Shui-lin, CHEN Jie, YANG Tao, WANG Xiao-shu, XIE Kai-nan, JIANG Xiang, . Low filed NMR and acoustic emission probability density study of freezing and thawing cycles damage for sandstone [J]. Rock and Soil Mechanics, 2019, 40(2): 436-444.
[10] YANG Ming-hui, CHEN He, CHEN Ke. Study of the hysteresis effect model of SWCC boundary curves based on fractal theory [J]. Rock and Soil Mechanics, 2019, 40(10): 3805-3812.
[11] SONG Hong-fang, YUE Zu-run, LI Bai-lin, ZHANG Song, . Thermal insulation and strengthening properties of anti-frost heaving subgrade structure of the high-speed railway in seasonally frozen soil region [J]. Rock and Soil Mechanics, 2019, 40(10): 4041-4048.
[12] LÜ Qing-feng, ZHOU Gang, WANG Sheng-xin, HUO Zhen-sheng, MA Bo, . Microstructure characteristics of solidified saline soil based on nuclear magnetic resonance [J]. Rock and Soil Mechanics, 2019, 40(1): 245-249.
[13] FENG Shang-xin, CHAI Jun-rui, XU Zeng-guang, QIN Yuan, CHEN Xi. Mesostructural change of soil-rock mixtures based on NMR technology [J]. , 2018, 39(8): 2886-2894.
[14] SHI Quan-bin, YANG Ping, YU Ke, TANG Guo-yi,. Sub peak adfreezing strength at the interface between frozen soil and structures [J]. , 2018, 39(6): 2025-2034.
[15] TAO Gao-liang, LI Jin, ZHUANG Xin-shan, XIAO Heng-lin, CUI Xi-lin, XU Wei-sheng. Determination of the residual water content of SWCC based on the soil moisture evaporation properties and micro pore characteristics [J]. , 2018, 39(4): 1256-1262.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Ying-yong,ZHANG Ding-li,ZHANG Hong-bo,SONG Xiu-guang. Research on failure mechanism and effects of prestressed anchor cables for reinforcing slopes[J]. , 2010, 31(1): 144 -150 .
[2] LIANG Jian-wei, FANG Ying-guang, GU Ren-guo. Analysis of microelectric field effect of seepage in tiny-particle clay[J]. , 2010, 31(10): 3043 -3050 .
[3] WANG Li-yan,JIANG Peng-ming,LIU Han-long. Mechanism analysis of residual liquefied deformation of breakwater during earthquake[J]. , 2010, 31(11): 3556 -3562 .
[4] LI Xiu-zhen,WANG Cheng-hua,DENG Hong-yan. A comparison of distance and Fisher discrimination methods applied to identifying potential landslides[J]. , 2011, 32(1): 186 -192 .
[5] JI Wu-jun. Investigation and analysis of engineering problems for loess tunnels[J]. , 2009, 30(S2): 387 -390 .
[6] CHEN Li-hua , LIN Zhi , LI Xing-ping. Study of efficacy of systematic anchor bolts in highway tunnels[J]. , 2011, 32(6): 1843 -1848 .
[7] CHEN Li-wen, SUN De-an. Bifurcation analysis of overconsolidated clays with soil-water coupling along different stress paths[J]. , 2011, 32(10): 2922 -2928 .
[8] ZHENG Gang ZHANG Li-ming DIAO Yu. Analysis of working performance of piles beneath excavation bottom and settlement calculation[J]. , 2011, 32(10): 3089 -3096 .
[9] ZHAO Ming-hua, LEI Yong, ZHANG Rui. Study of punching failure mode and safe thickness of pile foundation in karst region[J]. , 2012, 33(2): 524 -530 .
[10] WANG Song-he,QI Ji-lin. Experimental study of relaxation characteristics of warm permafrost[J]. , 2012, 33(6): 1660 -1666 .