›› 2016, Vol. 37 ›› Issue (6): 1579-1587.doi: 10.16285/j.rsm.2016.06.007

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study of migration laws of gas during loading-unloading process at different temperatures

XU Jiang1, 2, ZHANG Min1, 2, PENG Shou-jian1, 2, LI Bo-bo1, 2, WU Xue-feng1, 2   

  1. 1. State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; 2. State and Local Joint Engineering Laboratory of Methane Drainage in Complex Coal Gas Seam, Chongqing University, Chongqing 400044, China
  • Received:2014-09-10 Online:2016-06-13 Published:2018-06-09
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (51474040), the National Natural Science Foundation of China (51434003), the National Natural Science Foundation of China (51304255) and Basic and Cutting-edge Research Projects of Chongqing (cstc2013jjB90001).

Abstract: Using the self-developed triaxial servo-controlled seepage equipment for thermo-fluid-solid coupling of coal containing methane, a series of tests is conducted on coal samples during the process of gas loading-unloading at different temperatures to simulate the seepage characteristis of coal under the condition of temperature increase induced by increasing depth of mining. Meanwhile, parallel experiments on helium are also carried out to investigate the slippage effect of low permeability coal seam. The experimental results are shown as follows: (1) During the loading process, the axial strain increases and radial strain decreases linearly with the increase of gas pressure. During the unloading process, the strain of coal shows the same trend with the loading. The slope of strain varies with increasing gas pressure and temperature. (2) During the loading process, the permeability of coal shows a quadratic parabola trend with the increase of gas pressure, and it reaches the minimum at about 3.0 MPa. At the early unloading stage, the permeability of coal decreases slowly and then increases with the decrease of gas pressure. The permeability of coal during the loading process is lager than that during the unloading process. (3) Variation of permeability caused by slippage effect during loading process is greater than the amount of unloading process. What’s more, variation of permeability caused by slippage effect declines in an exponential function with the increase of gas pressure.

Key words: gas pressure, slippage effect, permeability, deformation

CLC Number: 

  • TD 821

[1] WANG Ke, SHENG Jin-chang, GAO Hui-cai, TIAN Xiao-dan, ZHAN Mei-li, LUO Yu-long, . Study on seepage characteristics of rough crack under coupling of stress-seepage erosion [J]. Rock and Soil Mechanics, 2020, 41(S1): 30-40.
[2] GUI Yue, WU Cheng-kun, ZHAO Zhen-xing, LIU Sheng-jun, LIU Rui, ZHANG Qiu-min. Effects of microbial decomposition of organic matter on engineering properties of peat soil [J]. Rock and Soil Mechanics, 2020, 41(S1): 147-155.
[3] GUO Jian, CHEN Jian, HU Yang. Time series prediction for deformation of the metro foundation pit based on wavelet intelligence model [J]. Rock and Soil Mechanics, 2020, 41(S1): 299-304.
[4] ZHAO Jiu-bin, LIU Yuan-xue, HE Shao-qi, YANG Jun-tang, BAI Zhun, . Mathematical statistical model of horizontal displacement and rainfall of step deformation landslide in Three Gorges reservoir area [J]. Rock and Soil Mechanics, 2020, 41(S1): 305-311.
[5] BAO Ning, WEI Jing, CHEN Jian-feng. Three dimensional discrete element analysis of soil arching in piled embankment [J]. Rock and Soil Mechanics, 2020, 41(S1): 347-354.
[6] DUAN Jun-yi, YANG Guo-lin, HU Min, QIU Ming-ming, YU Yun, . Experimental study on deformation characteristics of reinforced soil cushion subjected to loading and unloading [J]. Rock and Soil Mechanics, 2020, 41(7): 2333-2341.
[7] SHAO Chang-yue, PAN Peng-zhi, ZHAO De-cai, YAO Tian-bo, MIAO Shu-ting, YU Pei-yang, . Effect of pumping rate on hydraulic fracturing breakdown pressure and pressurization rate [J]. Rock and Soil Mechanics, 2020, 41(7): 2411-2421.
[8] TONG Xing, YUAN Jing, JIANG Ye-xiang, LIU Xing-wang, LI Ying, . Calculation of layered unloading additional stress of foundation pit based on Mindlin solution and the analysis of multiple factors influencing the rebound deformation [J]. Rock and Soil Mechanics, 2020, 41(7): 2432-2440.
[9] YAO Hong-bo, LI Bing-he, TONG Lei, LIU Xing-wang, CHEN Wei-lin. Analysis of metro tunnel deformation by upper excavation unloading considering spatial effect in soft soil [J]. Rock and Soil Mechanics, 2020, 41(7): 2453-2460.
[10] BAI Xue-yuan, WANG Xue-bin, SHU Qin, . Continuum-discontinuum simulation of effects of internal friction angle on local fracture of circular cavern surrounding rock under hydrostatic pressure [J]. Rock and Soil Mechanics, 2020, 41(7): 2485-2493.
[11] HOU Gong-yu, JING Hao-yong, LIANG Jin-ping, TAN Jin-xin, ZHANG Yong-kang, YANG Xi, XIE Xin, . Experimental study on surrounding rock deformation and acoustic emission characteristics of rectangular roadway under different loads [J]. Rock and Soil Mechanics, 2020, 41(6): 1818-1828.
[12] WANG Gang, QIN Xiang-jie, JIANG Cheng-hao, ZHANG Zhen-yu. Simulations of temperature effects on seepage and deformation of coal microstructure in 3D CT reconstructions [J]. Rock and Soil Mechanics, 2020, 41(5): 1750-1760.
[13] WANG Kai-xing, DOU Lin-ming, PAN Yi-shan, OPARIN V N . Experimental study of incompatible dynamic response feature of block rock mass [J]. Rock and Soil Mechanics, 2020, 41(4): 1227-1234.
[14] FANG Jin-jin, FENG Yi-xin, YU Yong-qiang, LI Zhen, LIN Zhi-bin. Wetting deformation characteristics of intact loess under true triaxial conditions [J]. Rock and Soil Mechanics, 2020, 41(4): 1235-1246.
[15] DU Yu-xiang, SHENG Qian, WANG Shuai, FU Xiao-dong, LUO Hong-xing, TIAN Ming, WANG Li-wei, MEI Hong-ru. Study of microstructure and mechanical properties of semi-diagenetic rock of Xigeda Formation [J]. Rock and Soil Mechanics, 2020, 41(4): 1247-1258.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!