Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (9): 2869-2879.doi: 10.16285/j.rsm.2019.1880

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Investigation on Brazilian tests and simulations of carbonaceous slate with different bedding angles

LI Er-qiang1, 2, ZHANG Hong-chang1, 2, ZHANG Long-fei1, 2, ZHU Tian-yu1, 2, LU Jing-gan1, 2, FENG Ji-li1, 2   

  1. 1. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China; 2. School of Mechanics and Civil Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
  • Received:2019-11-04 Revised:2020-03-24 Online:2020-09-11 Published:2020-10-20
  • Supported by:
    This work was supported by the State Key Research Development Program of China(2016YFC0600900) and the National Nature Science Foundation of China(41172116, U1261212).

Abstract: Bedding structural planes play a dominated role in the failure process of carbonaceous slate under loading/unloading conditions. In this work, specimens with the clay mineral rich carbonaceous slate were sampled from Muzhailing tunnel of Shaanxi province in China. A series of Brazilian split tests for the rock specimens was conducted and the corresponding numerical simulations were performed using the cohesive zone model (CZM), in which different bedding angles in the rock were taken into account. This study indicates that the load-displacement relations of the rock specimens with different bedding angles under loads are similar to each other. All of them demonstrates identical basic characters that includes the initial stage, the rock specimens compaction, nearly linear elasticity, and finally complete collapse. The tensile strength of different specimens with bedding angles of 0o, 30o, 45o, 60o, 90o and divider are 1.59, 1.12, 0.89, 0.76, 0.66, 1.65 MPa, respectively. The anisotropy coefficients are 2.41 and 2.50 (divider), and the deterioration of such tensile strength is significantly related to the intrinsic defects and damage due to the water-rock effects. Furthermore, the failure modes and patterns of the rock specimens strongly depend on bedding structures, which can be classified as approximately pure tension failure, shear failure, and mixed tension-shear failure. Additionally, the three-dimensional numerical results show that the predicted split failure processes of carbonaceous slate by the CZM model are in a fair agreement with the results of laboratory tests. Therefore, the fracture mechanical parameters of CZM are valuable for similar tunneling engineering as a reference.

Key words: carbonaceous slate, bedding, tensile strength, failure mode, cohesive zone model

CLC Number: 

  • TU 452
[1] SHI Feng, LU Kun-lin, YIN Zhi-kai. Determination of three-dimensional passive slip surface of rigid retaining walls in translational failure mode and calculation of earth pressures [J]. Rock and Soil Mechanics, 2021, 42(3): 735-745.
[2] WANG Li, LI Gao, CHEN Yong, TAN Jian-min, WANG Shi-mei, GUO Fei, . Field model test on failure mechanism of artificial cut-slope rainfall in Southern Jiangxi [J]. Rock and Soil Mechanics, 2021, 42(3): 846-854.
[3] LI Chao, LI Tao, JING Guo-ye, XIAO Yu-hua, . Study on the ultimate bearing capacity of surrounding soil underlying gripper of shaft boring machine [J]. Rock and Soil Mechanics, 2020, 41(S1): 227-236.
[4] HUANG Wei, XIAO Wei-min, TIAN Meng-ting, ZHANG Lin-hao, . Model test research on the mechanical properties of irregular columnar jointed rock masses [J]. Rock and Soil Mechanics, 2020, 41(7): 2349-2359.
[5] ZHANG Mao-chu, SHENG Qian, CUI Zhen, MA Ya-li-na, ZHOU Guang-xin. Effect of loading rate on tensile strength of rock materials and morphology of fracture joint surface [J]. Rock and Soil Mechanics, 2020, 41(4): 1169-1178.
[6] ZHAO Ming-hua, PENG Wen-zhe, YANG Chao-wei, XIAO Yao, LIU Ya-nan. Upper bound analysis of lateral bearing capacity of rigid piles in sloping ground [J]. Rock and Soil Mechanics, 2020, 41(3): 727-735.
[7] MENG Qing-bin, QIAN Wei, HAN Li-jun, YU Li-yuan, WANG Cong-kai, ZHOU Xing. Experimental study on formation mechanism and mechanical properties of regenerated structure of very weak cemented rock mass [J]. Rock and Soil Mechanics, 2020, 41(3): 799-812.
[8] LI Bin, HUANG Da, MA Wen-zhu, . Study on the influence of bedding plane on fracturing behavior of sandstone [J]. Rock and Soil Mechanics, 2020, 41(3): 858-868.
[9] JIANG Nan, HUANG Lin, FENG Jun, ZHANG Sheng-liang, WANG Duo, . Research on design and calculation method of tunnel-type anchorage of railway suspension bridge [J]. Rock and Soil Mechanics, 2020, 41(3): 999-1009.
[10] FAN Ke-wei, LIU Si-hong, LIAO Jie, FANG Bin-xin, WANG Jian-lei, . Experimental study on shearing characteristics of pebbles-filled soilbags [J]. Rock and Soil Mechanics, 2020, 41(2): 477-484.
[11] LIU Jie, LI Yun-zhou , YANG Yu-nan, LI Hong-ya, SUN Tao, LI Zheng, . Study on the method for determining the limit content of expansion agent in anchor body of self-expanding bolt [J]. Rock and Soil Mechanics, 2020, 41(10): 3266-3278.
[12] DAI Guo-liang, ZHU Wen-bo, GUO Jing, GONG Wei-ming, ZHAO Xue-liang, . Experiments on vertical uplift bearing capacity of suction caisson foundation in soft clay [J]. Rock and Soil Mechanics, 2019, 40(S1): 119-126.
[13] WANG Qin-ke, MA Jian-lin, CHEN Wen-long, YANG Yan-xin, HU Zhong-bo, . Centrifugal model tests and calculation method of uplift bearing capacity of rock-socketed pedestal pile overburden soil [J]. Rock and Soil Mechanics, 2019, 40(9): 3405-3415.
[14] HAN Gang, ZHOU Hui, CHEN Jian-lin, ZHANG Chuan-qing, GAO Yang, SONG Gui-hong, HONG Wang-bing, . Engineering geological properties of interlayer staggered zones at Baihetan hydropower station [J]. Rock and Soil Mechanics, 2019, 40(9): 3559-3568.
[15] LIU Xin-rong, DENG Zhi-yun, LIU Yong-quan, LIU SHU-lin, LU Yu-ming, . Study of cumulative damage and failure mode of horizontal layered rock slope subjected to seismic loads [J]. Rock and Soil Mechanics, 2019, 40(7): 2507-2516.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] JIANG Ling-fa, CHEN Shan-xiong, YU Zhong-jiu. Scattering around a liner of arbitrary shape in saturated soil under dilatational waves[J]. , 2009, 30(10): 3063 -3070 .
[2] ZHONG Jia-yu, ZHENG Yong-lai, NI Yin. Experimental study of response pattern of pore water pressure on sandy seabed under wave action[J]. , 2009, 30(10): 3188 -3193 .
[3] WANG Xing-hua,ZHANG Min,WANG Sui-xin. Elastoplastic analysis of surrounding rocks of subsea tunnel with consideration of seepage and material softening[J]. , 2009, 30(11): 3267 -3272 .
[4] YU Li-yuan,LI Shu-cai,XU Bang-shu. Stability analysis of Zhoushan subsea tunnel with drill-and-blast construction method[J]. , 2009, 30(11): 3453 -3459 .
[5] YANG Jian-ping, CHEN Wei-zhong, TIAN Hong-ming, Yü Hong-dan. Study of permeability evolutions in low permeability media under different stresses and temperatures[J]. , 2009, 30(12): 3587 -3594 .
[6] LAI Yuan-ming, ZHANG Yao, ZHANG Shu-juan, JIN Long, CHANG Xiao-xiao. Experimental study of strength of frozen sandy soil under different water contents and temperatures[J]. , 2009, 30(12): 3665 -3670 .
[7] HUANG Yao-ying, WANG Run-fu, WU Zhong-ru. Note on elasticity’s semi-infinite problem[J]. , 2009, 30(12): 3682 -3688 .
[8] DONG Cheng, ZHENG Ying-ren, CHEN Xin-ying, TANG Xiao-song. Research on composite support pattern of soil nails and prestressed anchors in deep foundation pits[J]. , 2009, 30(12): 3793 -3796 .
[9] SUN Shu-lin,LI Fang,CHEN Jun. Electrical resistivity measurement for lime-stabilized silt soil[J]. , 2010, 31(1): 51 -55 .
[10] XU Zhong-hua,WANG Wei-dong. Selection of soil constitutive models for numerical analysis of deep excavations in close proximity to sensitive properties[J]. , 2010, 31(1): 258 -264 .