Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (9): 2891-2900.doi: 10.16285/j.rsm.2019.1992

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study of mechanical properties of dredger fill under different unloading rates and stress paths

YANG Ai-wu1, 2, YANG Shao-kun1, 2, ZHANG Zhen-dong2   

  1. 1. College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; 2. Tianjin Key Laboratory of Soft Soil Characteristics and Engineering Environment, Tianjin Chengjian University, Tianjin 300384, China
  • Received:2019-11-25 Revised:2020-04-20 Online:2020-09-11 Published:2020-10-20
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (51978440) and Tianjin Science and Technology Project (19JCZDJC39700, 2016CJ01).

Abstract: The undrained unloading tests of isotropic consolidation on soft dredger fill of Tianjin Binhai are performed using the stress-path triaxial apparatus to determine the effects of different unloading stress paths and unloading rates on stress-strain relationship, pore pressure variation and failure strength characteristics. Some findings are as follows. The stress-strain curves under each unloading path are approximately hyperbolic curves. Under the unloading stress path of UU0.0(radial unloading, axial not unloading), the deformation of samples exhibits axial compression, and the curves of pore pressure have sharp yield points. On the contrary, the deformation of samples under the path of UU2.0(both axial and radial unloading), UU∞(axial unloading, radial not unloading) and UL1.0(axial unloading, radial loading) show axial tension. In this way, the pore pressure increases with the increase of strain, and finally the growth rate of the pore pressure slows down and tends to increase steadily. Under the same stress paths, the larger the unloading rate, the slower the development of the pore pressure in the initial stage of unloading and the greater the peak pore pressure. The stress-strain curves at unloading rate of 0.1, 0.2 and 0.3 kPa/min are found that the initial tangent modulus is greatly affected by unloading rate under unloading compression paths, while it is not influenced under the tensile paths. The value of unloading failure strength is the maximum under the UL1.0 path, the minimum in the UU2.0 path, and centered in the UU∞ path. Under the same unloading path, the failure strength increases with the increase of the unloading rate. According to the normalization of stress-strain curves, the formulas, which considers the influence of unloading rates and unloading stress paths, are developed to estimate the initial tangent modulus and the unloading failure intensity.

Key words: soft dredger fill, unloading stress path, unloading rate, stress-strain, initial unloading modulus, unloading failure strength

CLC Number: 

  • TU 411
[1] LIU Hai-feng, ZHENG Kun, ZHU Chang-qi, MENG Qing-shan, WU Wen-juan. Brittleness evaluation of coral reef limestone base on stress-strain curve [J]. Rock and Soil Mechanics, 2021, 42(3): 673-680.
[2] LÜ Ya-ru, WANG Chong, HUANG Hou-xu, ZUO Dian-jun, . Study on particle structure and crushing behaviors of coral sand [J]. Rock and Soil Mechanics, 2021, 42(2): 352-360.
[3] LI Li-hua, YU Xiao-ting, XIAO Heng-lin, MA Qiang, LIU Yi-ming, YANG Xing, . Mechanical properties of reinforcement about rice husk ash mixed soil [J]. Rock and Soil Mechanics, 2020, 41(7): 2168-2178.
[4] ZHU Nan, LIU Chun-yuan, ZHAO Xian-hui, WANG Wen-jing, . Micro-structure characteristics of structured clay under different stress paths in K0 consolidated drained tests [J]. Rock and Soil Mechanics, 2020, 41(6): 1899-1910.
[5] HOU Zhi-qiang, WANG Yu, LIU Dong-qiao, LI Chang-hong, LIU Hao. Experimental study of mechanical properties of marble under triaxial unloading confining pressure after fatigue loading [J]. Rock and Soil Mechanics, 2020, 41(5): 1510-1520.
[6] LI Min, MENG De-jiao, YAO Xin-yu, . Optimization of requirement for two kinds of ash solidified materials used in oil contaminated saline soil considering temperature sensitivity [J]. Rock and Soil Mechanics, 2020, 41(4): 1203-1210.
[7] LEI Hua-yang, HU Yao, LEI Shuang-hua, QI Zi-yang, XU Ying-gang, . Analysis of microstructure characteristics of air-booster vacuum preloading for ultra-soft dredger fills [J]. Rock and Soil Mechanics, 2019, 40(S1): 32-40.
[8] LIU Hong-yan. Influence of macroscopic and mesoscopic flaws on mechanical behavior of rock mass and slope stability [J]. Rock and Soil Mechanics, 2019, 40(S1): 431-439.
[9] HOU Gong-yu, JING Hao-yong, LIANG Jin-ping, ZHANG Guang-dong, TAN Jin-xin, ZHANG Yong-kang, YANG Xi, . Experimental study of deformation and acoustic emission characteristics of rectangular roadway under different unloading rates [J]. Rock and Soil Mechanics, 2019, 40(9): 3309-3318.
[10] MA Qiu-feng, QIN Yue-ping, ZHOU Tian-bai, YANG Xiao-bin. Mechanical properties and constitutive model of porous rock under loading and unloading [J]. Rock and Soil Mechanics, 2019, 40(7): 2673-2685.
[11] LI Xiu-lei, LI Jin-feng, SHI Jian-yong, . Elastoplastic constitutive model for municipal solid waste considering the effect of fibrous reinforcement [J]. Rock and Soil Mechanics, 2019, 40(5): 1916-1924.
[12] LI Xin-ming, KONG Ling-wei, GUO Ai-guo, . Stress-strain behavior of expansive soil under K0 condition with different unloading rates [J]. Rock and Soil Mechanics, 2019, 40(4): 1299-1306.
[13] WANG Juan-juan, HAO Yan-zhou, WANG Tie-hang. Experimental study of structural characteristics of unsaturated compacted loess [J]. Rock and Soil Mechanics, 2019, 40(4): 1351-1357.
[14] HU Tian-fei, LIU Jian-kun, WANG Tian-liang, YUE Zu-run, . Effect of freeze-thaw cycles on deformation characteristics of a silty clay and its constitutive model with double yield surfaces [J]. Rock and Soil Mechanics, 2019, 40(3): 987-997.
[15] YANG Ai-wu, PAN Ya-xuan, CAO Yu, SHANG Ying-jie, WU Ke-long, . Laboratory experiment and numerical simulation of soft dredger fill with low vacuum pre-compression [J]. Rock and Soil Mechanics, 2019, 40(2): 539-548.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[2] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .
[3] MA Kang, XU Jin, WU Sai-gang, ZHANG Ai-hui. Research on surrounding rock stability in local collapse section of highway tunnels[J]. , 2009, 30(10): 2955 -2960 .
[4] LIU Zhen-ping, HE Huai-jian, LI Qiang, ZHU Fa-hua. Study of the technology of 3D modeling and visualization system based on Python[J]. , 2009, 30(10): 3037 -3042 .
[5] ZHU Ze-qi, SHENG Qian, MEI Song-hua, ZHANG Zhan-rong. Improved ubiquitous-joint model and its application to underground engineering in layered rock masses[J]. , 2009, 30(10): 3115 -3121 .
[6] XU Yuan-jie, PAN Jia-jun, LIU Zu-die. An algorithm for slope paving of concrete faced rockfill dams[J]. , 2009, 30(10): 3139 -3144 .
[7] LI Shao-long, ZHANG Jia-fa, ZHANG Wei, XIAO Li. Study of spatial variability and stochastic modeling of surface soil permeability[J]. , 2009, 30(10): 3168 -3172 .
[8] WANG Gang, JIANG Yu-jing, WANG Wei-ming, LI Ting-chun. Development and application of an improved numeric control shear-fluild coupled apparatus for rock joint[J]. , 2009, 30(10): 3200 -3209 .
[9] SUN Wen-jing,SUN De-an,MENG De-lin. Compression deformation characteristics of saturated bentonite and sand-bentonite mixtures[J]. , 2009, 30(11): 3249 -3255 .
[10] JIA Yu-feng,CHI Shi-chun,LIN Gao. Constitutive model for coarse granular aggregates incorporating particle breakage[J]. , 2009, 30(11): 3261 -3266 .