Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (9): 2399-2409.doi: 10.16285/j.rsm.2021.1904

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Preliminary study of unloading calculation method in the unloading collapse process of loess between piles

JIN Xin1, WANG Tie-hang2, HAO Yan-zhou3, ZHAO Zai-kun 2, ZHANG Liang2, ZHANG Meng1   

  1. 1. School of Civil & Architecture Engineering, Xi’an Technological University, Xi’an, Shaanxi 710021, China; 2. College of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi 710021, China; 3. School of Civil and Transportation Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467036, China
  • Received:2021-11-10 Revised:2022-05-06 Online:2022-09-12 Published:2022-09-12
  • Supported by:
    This work was supported by the Natural Science Program of Shaanxi Science and Technology Department (2021JQ-644) and the Scientific Research Program of Shaanxi Education Department(21JK0672, 21JK0689).

Abstract: To investigate the proper value of unloading in the unloading collapse process of loess between piles, a correlation between pile-soil interface shear strength, shear displacement, and pile-soil interface normal force under collapse was studied by interface shear test. In the range of neutral points, the results indicate that the shear strength of the pile-soil interface under different vertical stresses and water contents can represent the pile side negative friction resistance. Using the mechanical principle of the mutual action and reaction force between the unloading amount and the negative frictional resistance, we proposed a method to calculate the unloading amount based on the unloading variation laws during loess collapse. The rationality of proposed method is verified via the comparison between the calculated unloading values and the field measured results of pile side negative friction resistance in different loess areas. This method provides a quantitative means of unloading effect to promote loess unloading collapse evaluation and optimize the relevant loess engineering design theory.

Key words: unloading collapse, collapsible loess, collapse potential, collapse process

CLC Number: 

  • TU411
[1] GAO Chang-hui, DU Guang-yin, LIU Song-yu, ZHUANG Zhong-xun, YANG Yong, HE Huan, . Influence of deep vibratory compaction on the horizontal stress change of collapsible loess [J]. Rock and Soil Mechanics, 2022, 43(2): 519-527.
[2] CUI Wei, WEI Jie, ZHANG Gui-ke, LI Hong-bi, . Research on collapse characteristics of binary particle column based on discrete element simulation [J]. Rock and Soil Mechanics, 2021, 42(1): 280-290.
[3] ZHU Yan-peng, DU Xiao-qi, YANG Xiao-hui, LI Hui-jun, . Research on utility tunnel foundation treated by compaction piles and post-work immersion test in self-weight collapsible loess area with large thickness [J]. Rock and Soil Mechanics, 2019, 40(8): 2914-2924.
[4] WANG Tie-hang, JIN Xin, LUO Yang, ZHANG Song-lin. A method for evaluation of loess collapse potential of unloading [J]. Rock and Soil Mechanics, 2019, 40(4): 1281-1290.
[5] AN Peng, ZHANG Ai-jun, XING Yi-chuan, NI Wan-kui, ZHANG Bo,. Analysis of soak infiltration and deformation characteristics for thick collapsible loess in Ili region [J]. , 2017, 38(2): 557-564.
[6] NIU Ya-qiang , WANG Xu , ZHENG Jing , JIANG Dai-jun , LIU De-ren , JIANG Peng-cheng , . Experimental research on anti-seepage effect of new embankment structure of lateral-constraint and seepage control [J]. , 2015, 36(S2): 252-258.
[7] HUANG Xue-feng , YANG Xiao-hui , YIN He , LIU Zi-long , ZHOU Jun-peng,. Study of relationship between maximum collapsing depth and neutral point position of pile foundation in collapsible loess ground [J]. , 2015, 36(S2): 296-302.
[8] MEI Yuan , HU Chang-ming , WEI Yi-feng , ZHANG Wen-cui , YUAN Yi-li , Wang Xue-yan , . A centrifugal test study of the deformation of high backfill foundation in deep ravine of Q2 and Q3 loess [J]. , 2015, 36(12): 3473-3481.
[9] WANG Duan-duan, ZHOU Zhi-jun, Lü Yan-da, WEI Jin. An experimental study of influence of drilling method on the bearing capacity of pile foundation in collapsible loess area [J]. , 2015, 36(10): 2927-2933.
[10] YAO Zhi-hua ,HUANG Xue-feng ,CHEN Zheng-han ,FANG Xiang-wei,. New recognition of collapsibility evaluation and remnant collapse of loess [J]. , 2014, 35(4): 998-1006.
[11] SHAO Sheng-jun,YANG Chun-ming,MA Xiu-ting,LU Si. Correlation analysis of collapsible parameters and independent physical indices of loess [J]. , 2013, 34(S2): 27-34.
[12] HUANG Xue-feng ,YANG Xiao-hui,. A study progress on in-situ soaking test on collapsible loess [J]. , 2013, 34(S2): 222-228.
[13] WANG Xiao-jun ,WANG Wen-di ,LI Ming ,WEI Yong-liang ,YANG Yin-hai ,QU Yao-hui . Field test research on treatment effect of embankment foundation in class Ⅳ dead-weight collapsible loess zone along railway passenger dedicated line [J]. , 2013, 34(S2): 318-324.
[14] LIU Zheng-hong,ZHENG Jian-guo. Analysis of creep influence in long-term pile stress test [J]. , 2013, 34(5): 1391-1396.
[15] MI Hai-zhen, YANG Peng. A field experimental study of compaction piles in collapsible loess foundation [J]. , 2012, 33(7): 1951-1956.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .