Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (9): 2337-2346.doi: 10.16285/j.rsm.2021.1985

• Fundamental Theroy and Experimental Research •     Next Articles

Correlation between frost heave and microscopic parameters of sand under water vapor recharge

LEI Hua-yang1, 2, 3, ZHANG Wen-zhen1, HUO Hai-feng4, FENG Shuang-xi1, 2, 3, LI Qi-ang4, LIU Han-lei4   

  1. 1. Department of Civil Engineering, Tianjin University, Tianjin 300354, China; 2. Key Laboratory of Coast Civil Structure Safety of Education Ministry, Tianjin University, Tianjin 300354, China; 3. Key Laboratory of Comprehensive Simulation of Engineering Earthquake and Urban-Rural Seismic Resilience, China Earthquake Administration, Tianjin 300350, China; 4. School of Transportation Science and Engineering, Civil Aviation University of China, Tianjin 300300, China
  • Received:2021-11-26 Revised:2022-05-06 Online:2022-09-12 Published:2022-09-12
  • Supported by:
    国家自然科学基金(No.52078334);国家重点研发计划项目(No.2017YFC0805402);土木工程防灾国家重点实验室开放基金项目(SLDRCE17-01)。

Abstract: Water vapor supply can induce frost heave of sand filler. Based on the self-developed moisture migration and frost heaving tester, the variations of sand moisture content, temperature and frost heave with freezing time under gaseous water recharge were studied. The change characteristics of sand microstructure during freezing were examined by stereomicroscope. By combining with the grey correlation theory, the correlation between the macroscopic index, i.e., frost heave and the microscopic parameters was analyzed. Notable frost heaving was observed under water vapor supply, and the frost heave reached 3.45 mm after 7 days of freezing. After sandy soil frost heaving, the proportion of large pore area increased and the proportions of small and medium micropore area decreased, and the change trend of pore number proportion was opposite to that of area proportion, while pore abundance value changed little, pore orientation angle distribution in each interval tended to be more uniform, the probability entropy of pore orientation present an overall upward trend of oscillation, and the pore fractal dimension showed a trend of decrease. In addition, the grey correlation theory is used to establish the correlation between the frost heave and the average pore size and other microscopic parameters, which provides an insight into the microscopic mechanism of sand frost heaving under water vapor supply.

Key words: sandy soil, water vapor supply, frost heave, microstructure characteristics, microstructure parameter

CLC Number: 

  • TU411
[1] YI Ming-xing, ZHU Chang-qi, WANG Tian-min, LIU Hai-feng, MA Cheng-hao, WANG Xing, ZHANG Po-yu, QU Ru, . In-situ experimental study on spudcan penetration depth of jack-up platform in a site in Qidong city [J]. Rock and Soil Mechanics, 2022, 43(S2): 487-496.
[2] ZHANG Jin-xun, SONG Yong-wei, YANG Hao, ZHANG Lei, QI Yi, . Influences of load and fine soil content on frost heave and thawing settlement properties of sandy gravel [J]. Rock and Soil Mechanics, 2022, 43(S1): 213-221.
[3] ZHOU Bing-hong. A simplified method to estimate soil-water characteristic curve for sandy soil [J]. Rock and Soil Mechanics, 2022, 43(S1): 222-228.
[4] ZHANG Jin-jin, LI Bo, YU Chuang, ZHANG Mao-yu, . Mechanical properties of slag-fly ash based geopolymer stabilized sandy soil [J]. Rock and Soil Mechanics, 2022, 43(9): 2421-2430.
[5] DONG Jian-hua, WU Xiao-lei, SHI Li-jun, YU Xiao-yan, HE Peng-fei, . Calculation method and analysis of horizontal frost heave effect of L-shaped retaining wall in permafrost regions [J]. Rock and Soil Mechanics, 2022, 43(4): 879-890.
[6] SHEN Yu-peng, WANG Du-li, LIN Yuan-rong, TANG Tian-xiao, LIU Xin, . On the effect of prevention measures against horizontal frost heave of foundation pits over winter [J]. Rock and Soil Mechanics, 2021, 42(5): 1434-1442.
[7] DOU Jin-xi, ZHANG Gui-jin, ZHANG Xi, FAN Wei-zhong, SONG Wei, . Dynamic response analysis of slurry-soil coupling in sandy soil based on pulsating grouting [J]. Rock and Soil Mechanics, 2021, 42(12): 3315-3327.
[8] ZHANG Chang-guang, GAO Ben-xian, LI Tian-bin, SHAN Ye-peng, . An elastic-plastic solution for frost heaving force of cold region tunnels considering transversely isotropic frost heave and displacement release [J]. Rock and Soil Mechanics, 2021, 42(11): 2967-2976.
[9] ZHENG Li-fu, GAO Yong-tao, ZHOU Yu, TIAN Shu-guang, . Research on surface frost heave and thaw settlement law and optimization of frozen wall thickness in shallow tunnel using freezing method [J]. Rock and Soil Mechanics, 2020, 41(6): 2110-2121.
[10] XIA Cai-chu, WANG Yue-song, ZHENG Jin-long, LÜ Zhi-tao. Study of differential frost heave of fractured rock mass [J]. Rock and Soil Mechanics, 2020, 41(4): 1161-1168.
[11] MI Bo, XIANG Yan-yong, . Model experiment and calculation analysis of excavation-seepage stability for shallow shield tunneling in sandy ground [J]. Rock and Soil Mechanics, 2020, 41(3): 837-848.
[12] WU Qi, LIU Kang, GUO Qi-zhou, ZHAO Kai, CHEN Guo-xing, . A new method for evaluating small-strain shear modulus of sandy soils based on binary medium model [J]. Rock and Soil Mechanics, 2020, 41(11): 3641-3650.
[13] KONG Liang, LIU Wen-zhuo, YUAN Qing-meng, DONG Tong, . Triaxial tests on gassy sandy soil under constant shear stress paths [J]. Rock and Soil Mechanics, 2019, 40(9): 3319-3326.
[14] LIU Yang, YU Peng-qiang. Analysis of soil arch and active earth pressure on translating rigid retaining walls [J]. Rock and Soil Mechanics, 2019, 40(2): 506-516.
[15] WANG Dong-wei, LU Wu-ping, TANG Chao-sheng, ZHAO Hong-wei, LI Sheng-jie, LIN Luan, LENG Ting, . Sample preparation technique and microstructure quantification method for sandy soil [J]. Rock and Soil Mechanics, 2019, 40(12): 4783-4792.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .