Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (9): 2615-2623.doi: 10.16285/j.rsm.2021.2008

• Numerical Analysis • Previous Articles     Next Articles

Seismic incident wave separation method based on array observation and numerical verification

RUAN Bin, JI Han-wen, WANG Su-yang, HE Hong-jun, MIAO Yu   

  1. School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
  • Received:2021-11-30 Revised:2022-05-06 Online:2022-09-12 Published:2022-09-12
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51908237, 51978304, 52008184), the Postdoctoral Research Foundation of China (2021T140237) and the Fundamental Research Funds for the Central Universities(2020kfyXJJS114).

Abstract: The accurate input of bedrock ground motion has a significant impact on the rationality of the evaluation results of seismic effect characteristics in complex sites. The restart-iteration method is used to separate the incident wave from the downgoing wave contained in the bedrock observation record, and the incident wave is converted into the equivalent nodal force and viscoelastic boundary as the input form and the bedrock boundary condition. The seismic incident wave separation method is proposed which can be used in the site numerical simulation analysis. The IKRH01 array of KiK-NET strong earthquake observation network in Japan is used for numerical verification, and the method is compared with the existing direct nodal force input method and acceleration input method, and the site amplification effect is analyzed from the frequency domain by surface-to-borehole spectral ratio method. The results show that: 1) The incident wave separation method can separate the incident wave at the bedrock of the array and achieve accurate input of ground motion. 2) The spectral ratio obtained by the method of incident wave separation is in good agreement with the peaks of order 2−6 observed by the array, indicating that the method can effectively simulate the seismic site response. 3) By comparing the spectrum ratio of downgoing wave with or without consideration, it is found that the surface-to-borehole spectral ratio within 0−10 Hz is mainly affected by downgoing wave interference, and the site amplification effect caused by incident wave is not significant.

Key words: incident wave separation, site response simulation, site effect, array observation, numerical simulation

CLC Number: 

  • TU452,P631
[1] JIANG Fan, LIU Hua, YUE Qing, YANG Wen-shuang. Variation trend of soil pressure under cutting edges of the super large caisson during sinking stage [J]. Rock and Soil Mechanics, 2022, 43(S2): 431-442.
[2] ZHOU Hao, CHEN Guo-liang, HE Xiang, WU Jia-ming, ZHANG Rong-tang, YIN Da-wei, YUAN Kun-bin, WU Zhe, . Key technologies of building information model integration and simulation in geotechnical engineering [J]. Rock and Soil Mechanics, 2022, 43(S2): 443-453.
[3] DENG Peng-hai, LIU Quan-sheng, HUANG Xing, PAN Yu-cong, BO Yin, . Combined finite-discrete element numerical study on the buckling failure mechanism of horizontally layered soft rock mass [J]. Rock and Soil Mechanics, 2022, 43(S2): 508-523.
[4] LUO Guan-yong, ZHONG Miao, CAO Hong, PAN Hong, . Measured data and numerical simulation analysis of shield tunneling in sand [J]. Rock and Soil Mechanics, 2022, 43(S2): 563-574.
[5] YUAN Wei, ZHONG Hui-ya, ZHU Yi, TANG Jia, HONG Jian-fei, WANG Ya-xiong, LIN Hang, WAN Ning, WANG An-li, . Determination method of slope critical failure state based on monitoring data fusion [J]. Rock and Soil Mechanics, 2022, 43(S2): 575-587.
[6] DING Yang, XIONG Ye, CHEN Zi-zi, WU Xiao-han, WANG Xiao-bo, . Field test and numerical simulation for dynamic characteristics of cast-in-place pile [J]. Rock and Soil Mechanics, 2022, 43(S2): 640-646.
[7] FAN Hao-bo, ZHOU Ding-kun, LIU Yong, SONG Yu-xiang, ZHU Zheng-guo, ZHU Yong-quan, GAO Xin-qiang, GUO Jia-qi, . Mechanical response characteristics of lining structure of pipeline karst tunnels in water-rich areas [J]. Rock and Soil Mechanics, 2022, 43(7): 1884-1898.
[8] ZHANG Ge, CAO Ling, WANG Cheng-tang, . Development and application of elastic-plastic damage constitutive model considering softening characteristics of polycrystalline ice [J]. Rock and Soil Mechanics, 2022, 43(7): 1969-1977.
[9] ZHANG Chan-qing, HE Feng-fei, JIANG Shun-hang, ZENG Zi-zhen, XIONG Feng, CHEN Jiang, . A mobile point heat source method for soil moisture monitoring [J]. Rock and Soil Mechanics, 2022, 43(7): 2025-2034.
[10] LI Ning, PAN Hang, ZHANG Mao-jian, ZHANG Hui-li, LI Xin-zhen, XU Jian-cong, . Influence of rainfall patterns on anti-seepage performance of capillary barrier covers [J]. Rock and Soil Mechanics, 2022, 43(6): 1546-1556.
[11] LENG Wu-ming, DENG Zhi-long, XU Fang, ZHANG Qi-shu, DONG Jun-li, LIU Si-hui. A prestress loss model for subgrade considering creep effect of subgrade soil [J]. Rock and Soil Mechanics, 2022, 43(6): 1671-1682.
[12] CHI Xiao-lou, YANG Ke, LIU Wen-jie, FU Qiang, WEI Zhen, . Study of caving pattern of regenerated roof in fully-mechanized slicing mining of steeply dipping coal seam [J]. Rock and Soil Mechanics, 2022, 43(5): 1391-1400.
[13] QIAO Ya-fei, TANG Jie, GU Yun, DING Wen-qi, . Evolution mode of lateral pressure on the trench wall and disturbance analysis during construction of super-deep diaphragm wall [J]. Rock and Soil Mechanics, 2022, 43(4): 1083-1092.
[14] HE Yong, HU Guang, ZHANG Zhao, LOU Wei, ZOU Yan-hong, LI Xing, ZHANG Ke-neng. Numerical simulation on the migration and transformation mechanism of hexavalent chromium in contaminated site [J]. Rock and Soil Mechanics, 2022, 43(2): 528-538.
[15] WEI Tian-yu, WANG Xu-hong, LÜ Tao, HU Da-wei, ZHOU Hui, HONG Wen, . Analysis of the influence of wetting expansion and sand mixing rate on the THM coupling process of hybrid buffer material [J]. Rock and Soil Mechanics, 2022, 43(2): 549-562.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .