Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (9): 2568-2580.doi: 10.16285/j.rsm.2021.2009

• Geotechnical Engineering • Previous Articles     Next Articles

Deterioration-buckling failure mechanism of consequent bedding limestone bank slope in Three Gorges Reservoir area

YAN Guo-qiang1, YIN Yue-ping2, HUANG Bo-lin3, HU Lei3   

  1. 1. Faculty of Engineering, China University of Geosciences, Wuhan, Hubei 430074, China; 2. China Institute of Geological Environment Monitoring, Beijing 100081, China; 3. Hubei Key Laboratory of Disaster Prevention and Mitigation, China Three Gorges University, Yichang, Hubei 443002, China
  • Received:2021-11-30 Revised:2022-05-11 Online:2022-09-12 Published:2022-09-12
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(42077234) and the National Key R&D Program of China (2018YFC1504803).

Abstract: In the Wuxia section of the Three Gorges Reservoir area, it is found that there are many deformation signs of sliding-bending along the bedding bank slope, and the cyclic fluctuation of reservoir water worsens the deterioration and instability of the bank leading edge. Taking Qingshi #6 slope in the Wuxia section as an example, an indoor generalized model is constructed to study the catastrophe mechanism of bedding limestone bank slope under the deterioration of rock mass in hydro-fluctuation belt. The research shows that: the bank slope is in a stable state as a whole for a long time before impoundment. After impoundment, with the deterioration aggravation of rock mass, the bank slope deformation intensifies until buckling failure. The deterioration of rock mass shortens the instability process of ‘deterioration-buckling’. Kinematic analysis shows that the peak velocity of the same rock stratum is similar during buckling failure. The movement characteristics of the rear part of the ‘buckling point’ of rock mass are relatively consistent, but the front part is relatively discrete. The buckling failure is the turning point and apex of bank slope energy release. Both displacement and stress show signs of premature failure after gradually increasing with deterioration evolution. The stress produces ‘concentration-release’ around the buckling failure. On the whole, the stress variation is earlier than the displacement variation, indicating that the stress monitoring is more effective. The core of stress monitoring is to determine the ‘key section’. For the ‘deterioration-buckling’ bank slope, the sharp increase of stress at the ‘deflection section’ of the front edge can be an important characterization of the critical instability of the bank slope. The trailing edge pushing always exists in the evolution process of ‘deterioration buckling’, which is the premise of bank slope catastrophe failure. However, the dominant factor of bank slope instability is the continuous deterioration of the rock mass in the hydro-fluctuation belt. The Qingshi #6 slope is currently in the process of evolution toward ‘strong bending uplift’, it may gradually evolve from a stable/basically stable state to an understable state, due to the continuous deterioration of the rock mass in the hydro-fluctuation belt.

Key words: physical model test, rock mass deterioration, consequent bedding limestone bank slope, deterioration-buckling, Wuxia section of the Three Gorges Reservoir

CLC Number: 

  • P694,TU457
[1] ZHONG Wei, ZHANG Shuai, HE Na, . Experimental study on soil arch behind anti-slide pile based on relative deformation method [J]. Rock and Soil Mechanics, 2022, 43(S2): 315-326.
[2] DAI Bei-bing, LI Tian-qi, YANG Jun, LIU Feng-tao, . An experimental investigation of the fabric effect on angle of repose [J]. Rock and Soil Mechanics, 2022, 43(4): 957-968.
[3] XIAO Jie-fu, LI Yun-an, HU Yong, ZHANG Shen, CAI Jun-ming, . Model tests on deformation characteristics of ancient bank landslide under water level fluctuation and rainfall [J]. Rock and Soil Mechanics, 2021, 42(2): 471-480.
[4] CHENG Yong-hui, HU Sheng-gang, WANG Han-wu, ZHANG Cheng. Study on depth effect of pressuremeter feature parameters in deep buried sand [J]. Rock and Soil Mechanics, 2020, 41(6): 1881-1886.
[5] JIANG Qiang-qiang, JIAO Yu-yong, SONG Liang, WANG Hao, XIE Bi-ting, . Experimental study on reservoir landslide under rainfall and water-level fluctuation [J]. Rock and Soil Mechanics, 2019, 40(11): 4361-4370.
[6] ZHAO Jian-jun, YU Jian-le, XIE Ming-li, CHAI He-jun, LI Tao, BU Fan, LIN Bing,. Physical model studies on fill embankment slope deformation mechanism under rainfall condition [J]. , 2018, 39(8): 2933-2940.
[7] YANG Zhong-min, GAO Yong-tao, WU Shun-chuan, ZHOU Yu, . Physical model test on large deformation mechanism and key treatment techniques of tunnel [J]. Rock and Soil Mechanics, 2018, 39(12): 4482-4492.
[8] GUO Hao-ran, QIAO Lan, LI Yuan. Research on the bearing performance of energy piles using an improved load-transfer model on pile-soil interface [J]. , 2018, 39(11): 4042-4052.
[9] CAI Qiang, LI Qian-kun, SHI Sheng-wei, ZHANG Yong, . Study of mechanical characteristics of short anti-sliding steel pipe pile by physical model test [J]. , 2016, 37(S2): 679-684.
[10] JIN Lin, HU Xin-li, TAN Fu-lin, HE Chun-can, ZHANG Han, ZHANG Yu-ming. Model test of soil arching effect of anti-slide piles based on infrared thermal imaging technology [J]. , 2016, 37(8): 2332-2340.
[11] HUANG Jin-lin , ZHANG Ting , LI Jia-lin , . Comparative analysis of empirical estimate methods of reservoir bank landslide surge [J]. , 2014, 35(S1): 133-140.
[12] ZHU Ting-wei,XU Xin-li,XU Cong,YONG Rui. Physical model test research on anti-sliding characteristics of rock-socketed pile [J]. , 2014, 35(S1): 165-172.
[13] MA Jun-wei, TANG Hui-ming, HU Xin-li, YONG Rui, XIA Hao, SONG You-jian. Application of 3D laser scanning technology to landslide physical model test [J]. , 2014, 35(5): 1495-1505.
[14] WU Ba-tao , ZHU He-hua , XU Qian-wei , MING Juan . Experimental study of similar material for weak surrounding rock mass of class IV [J]. , 2013, 34(S1): 109-116.
[15] CHEN Hao , REN Wei-zhong , SHU Zhong-gen , LI Dan . Model test study and numerical analysis of mechanism of anchor bolt under different supporting conditions [J]. , 2012, 33(S1): 277-282.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .