Rock and Soil Mechanics ›› 2023, Vol. 44 ›› Issue (1): 88-98.doi: 10.16285/j.rsm.2022.0191

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Analysis of longitudinal deformation of shield tunnel subjected to shield tail asymmetric thrust

ZHANG Zhi-wei1, LIANG Rong-zhu1, LI Zhong-chao2, SUN Lian-wei3, SHEN Wen3, WU Wen-bing1   

  1. 1. Faculty of Engineering, China University of Geosciences, Wuhan, Hubei 430074, China; 2. Wuhan Municipal Construction Group Co., Ltd., Wuhan, Hubei 340023, China; 3. Engineering General Institute, Shanghai Construction Group Co., Ltd., Shanghai 200080, China
  • Received:2022-02-21 Accepted:2022-05-22 Online:2023-01-16 Published:2023-01-12
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (41807262), the Research Project of Wuhan Municipal Construction Group Co., Ltd. (wszky202013), the Research Project of Shanghai Construction Engineering Group (19YF1421000) and Zhejiang Province’s 2022 Key R&D Plan Project-‘Lingyan’ Project (2022C03151).

Abstract: When the shield machine is driving along a curve alignment or during deviation correction, the asymmetrical thrust will generate an additional bending moment on the head of the tunnel ring, which will cause longitudinal deformation of the shield tunnel. Current analytical methods commonly simplify the existing tunnel as an equivalent continuous beam, which will overlook the weakening of the circumferential joint. In this study, a simplified longitudinal beam-spring shield tunnel model (SLBSM) is established, which can simultaneously consider the opening and dislocation between segmental rings. Then, the shield tunnel under construction is simplified as a SLBSM resting on the Winkler foundation. The shield tunnel longitudinal deformation subjected to the shield tail asymmetric thrust is solved using the state space method; the reliability and applicability of the proposed method are verified by comparing with the results from finite element analysis and two existing continuous beam model. The parametric analysis is further performed to investigate the influences of some parameters on the deformation of shield tunnel. The results show that the longitudinal displacement of shield tunnel based on the continuous beam model exhibits continuous characteristics. While the longitudinal displacement predicted by the proposed method exhibits discontinuous characteristics, “gaps” appear at the joints between adjacent rings. Through the parametric analyses, it is found that increasing the rotation stiffness of the circumferential joint will effectively reduce the tunnel heave and opening of joint; increasing the shearing stiffness of the circumferential joint will effectively lead to the decrease of dislocation between adjacent rings, but it will increase the tunnel heave and shear force; improving the foundation stiffness will effectively reduce the tunnel heave and opening of joint, but it will result in the increase of the dislocation between adjacent rings. The effect of the axial force at the beginning of the segment on the longitudinal deformation of the tunnel cannot be ignored. Increasing the axial force will effectively reduce the tunnel heave, opening of joint, and dislocation between adjacent rings.

Key words: asymmetric thrust, shield tunnel, longitudinal deformation, longitudinal beam-spring shield tunnel model, state space method

CLC Number: 

  • U 451
[1] ZHANG Zhi-guo, YE Tong, ZHU Zheng-guo, PAN Y T, WU Zhong-teng, . Hydraulic and displacement response analysis of shield tunnel in gassy seabed under wave action [J]. Rock and Soil Mechanics, 2023, 44(6): 1557-1574.
[2] ZHONG Xiao-chun, HUANG Si-yuan, HUAI Rong-guo, ZHU Cheng, HU Yi-kang, CHEN Xu-quan, . Longitudinal uplift characteristics of segments of shield tunnels based on buoyancy of grouting [J]. Rock and Soil Mechanics, 2023, 44(6): 1615-1624.
[3] WANG Zu-xian, SHI Cheng-hua, GONG Chen-jie, CAO Cheng-yong, PENG Zhu, SUN Ying-jie, . Calculation model of longitudinal nonlinear equivalent bending stiffness of shield tunnel considering its transverse performance [J]. Rock and Soil Mechanics, 2023, 44(5): 1295-1308.
[4] LIU Yong, ZHOU Yi-sheng, SUO Xiao-ming, FAN Hao-bo, CAO Yi-ze, DU Zhi-tian, . Model test on the deformation law of shield tunnel underpassing high speed railway roadbed [J]. Rock and Soil Mechanics, 2023, 44(4): 941-951.
[5] WU Hong, YE Zhi, ZHANG Yu-ting, LIU Hua-bei, . Numerical study on seismic behavior of shield tunnel crossing saturated sandy strata with different densities [J]. Rock and Soil Mechanics, 2023, 44(4): 1204-1216.
[6] ZHANG Zhi-guo, LUO Jie, ZHU Zheng-guo, PAN Y T, SUN Miao-miao, . Upper limit solution for 3D logarithmic spiral model of stability on shield tunnel face under influence of heavy rainfall [J]. Rock and Soil Mechanics, 2023, 44(12): 3587-3601.
[7] GUAN Ling-xiao, XU Chang-jie, WANG Xue-peng, XIA Xue-qin, KE Wen-hai, . Analytical solution of deformation of underlying shield tunnel caused by foundation pit excavation and dewatering [J]. Rock and Soil Mechanics, 2023, 44(11): 3241-3251.
[8] ZHANG Dong-ming, ZHOU Ye-lu, HUANG Hong-wei, ZHANG Jin-zhang, . A physics and information dual-driven intelligent diagnosis method for longitudinal mechanical behavior of long-distance shield tunnels [J]. Rock and Soil Mechanics, 2023, 44(10): 2997-3010.
[9] LUO Wei-ping, YUAN Da-jun, JIN Da-long, LU Ping, CHEN Jian, GUO Hai-peng, . Centrifugal model test on relationship between support pressure of shield tunnel face and ground deformation in water rich sand strata [J]. Rock and Soil Mechanics, 2022, 43(S2): 345-354.
[10] CUI Guang-yao, MA Jian-fei, NING Mao-quan, TANG Zai-xing, LIU Shun-shui, TIAN Yu-hang, . Comparative analysis of construction reinforcement scheme of super large rectangular pipe jacking shield tunnel close to and under high-speed railway [J]. Rock and Soil Mechanics, 2022, 43(S2): 414-424.
[11] LI Chun-lin. Curved solid failure model and calculation method of supporting pressure for shield tunnel excavation face [J]. Rock and Soil Mechanics, 2022, 43(8): 2092-2102.
[12] WANG Zu-xian, SHI Cheng-hua, GONG Chen-jie, CAO Cheng-yong, LIU Jian-wen, PENG Zhu, . Analytical method to estimate the influence of foundation pit excavation adjacent to the station (working shaft) on the underlying shield tunnel [J]. Rock and Soil Mechanics, 2022, 43(8): 2176-2190.
[13] YANG Jian-ping, WANG Chen, HUANG Yu-cheng, QIN Chuan, CHEN Wei-zhong, . Variation law of segment strain increment of an underwater shield tunnel during normal operation [J]. Rock and Soil Mechanics, 2022, 43(8): 2253-2262.
[14] ZHANG Jian, QI Rui-yu, ZONG Jing-yao, FENG Tu-gen. Failure mechanism of shield tunnel circumferential excavation face and the influence of the dilatancy effect on the tunnel stability [J]. Rock and Soil Mechanics, 2022, 43(7): 1833-1844.
[15] ZHANG Zhi-guo, YE Tong, ZHANG Cheng-ping, PAN Y T, WU Zhong-teng, . Response analysis of sand seepage pressure around shield tunnel in sloping seabed under Stokes second order wave [J]. Rock and Soil Mechanics, 2022, 43(6): 1635-1659.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WEI Li,CHAI Shou-xi,CAI Hong-zhou,WANG Xiao-yan,LI Min3,SHI Qian. Research on tensility of wheat straw for reinforced material[J]. , 2010, 31(1): 128 -132 .
[2] HUANG Qing-xiang, ZHANG Pei, DONG Ai-ju. Mathematical model of “arch beam” of thick sandy soil layer movement in shallow seam[J]. , 2009, 30(9): 2722 -2726 .
[3] JING Zhi-dong, LIU Jun-xin. Experimental research on dynamic deformations of semi-rigid structures of subgrade bed-mudstone of red beds[J]. , 2010, 31(7): 2116 -2121 .
[4] LIU Zheng-hong,LIAO Yan-hong,ZHANG Yu-shou. Preliminary study of physico-mechanical properties of Luanda sand[J]. , 2010, 31(S1): 121 -126 .
[5] FAN Heng-hui, GAO Jian-en, WU Pu-te, LUO Zong-ke. Physicochemical actions of stabilized soil with cement-based soil stabilizer[J]. , 2010, 31(12): 3741 -3745 .
[6] ZHANG Cheng-ping,ZHANG Ding-li,LUO Jian-jun,WANG Meng-shu,WU Jie-pu. Remote monitoring system applied to the construction of metro station undercrossing existing metro tunnel[J]. , 2009, 30(6): 1861 -1866 .
[7] WANG Jun, CAO Ping, LI Jiang-teng, LIU Ye-ke. Analysis of stability of tunnel-slope with rheological medium under rainfall infiltration[J]. , 2009, 30(7): 2158 -2162 .
[8] ZHANG Yuan, WAN Zhi-jun, KANG Jian-rong, ZHAO Yang-sheng. Analysis of stage characteristics of sandstone permeability under conditions of temperature and triaxial stress[J]. , 2011, 32(3): 677 -683 .
[9] ZHANG Xue-chan , GONG Xiao-nan , YIN Xu-yuan , ZHAO Yu-bo. Monitoring analysis of retaining structures for Jiangnan foundation pit of Qingchun road river-crossing tunnel in Hangzhou[J]. , 2011, 32(S1): 488 -0494 .
[10] XI Ren-shuang, CHEN Cong-xin, XIAO Guo-feng, HUANG Ping-lu. Study of influence of discontinuities on rock movement and surface deformation in eastern area of Chengchao iron mine[J]. , 2011, 32(S2): 532 -538 .