Rock and Soil Mechanics ›› 2023, Vol. 44 ›› Issue (1): 241-250.doi: 10.16285/j.rsm.2022.0218

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Analytical solution of rainfall infiltration in homogeneous unsaturated slope and its application in loess slope

HAN Jia-ming1, 2, DONG Zhao1, 2, SU San-qing2, 3, MA Xin1, 2, LI Guan-bing1, 2   

  1. 1. College of Architectural and Civil Engineering, Xi’an University of Science and Technology, Xi’an, Shaanxi 710054, China; 2. Key Laboratory of Geotechnical and Underground Engineering, Xi’an University of Science and Technology,Xi’an, Shaanxi 710054, China; 3. School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi 710055, China
  • Received:2022-02-26 Accepted:2022-05-24 Online:2023-01-16 Published:2023-01-13
  • Supported by:
    This work was supported by the National Natural Science Foundation of China Youth Science Foundation Program (51808444).

Abstract: Rainfall-induced instability of loess slopes is very common. Based on the governing equation for unsaturated seepage, a computational model of the seepage field of loess slope is established. The VG function and Gardner function are used to describe the soil-water characteristic curve and permeability function, respectively. The analytical solution of rainfall infiltration is derived by using traveling wave approximation and series expansion method. The validity of the analytical solution is demonstrated by fitting the model test data to the soil-water parameters using the numerical inversion method. By comparing and analyzing the distribution law of volumetric water content between the experimental value and the analytical solution under different working conditions, it is found that the test values of volumetric water content at shallow measurement points in the slope test model are closer to the analytical solution, and the peak volumetric water content reached during the downward movement of the wetting front is smaller compared to the analytical solution; the test value of volumetric water content of deep measurement points in the slope test model has some error with the analytical solution in the early stage, and the analytical solution of volumetric water content of deep measurement points grows faster in the early stage compared with the test value, which is mainly attributed to the hysteresis of wetting front in deeper soil layers.

Key words: loess slope, rainfall infiltration, traveling wave reduction, series expansion method, analytical solution, numerical inversion

CLC Number: 

  • TV 139.14
[1] YU Jun, LI Dong-kai, HE Zhen, ZHANG Zhi-zhong. Analytical solution of anisotropic seepage in dam foundation with anti-seepage walls at both ends [J]. Rock and Soil Mechanics, 2023, 44(8): 2381-2388.
[2] HUANG Juan, HE Zhen, YU Jun, YANG Xin-xin. Analytical solution for steady seepage around circular cofferdam in soil layer with anisotropic permeability [J]. Rock and Soil Mechanics, 2023, 44(4): 1035-1043.
[3] ZHENG Chang-jie, CUI Yi-qin, WU Chen, LUO Tong, LUAN Lu-bao, . Simplified analytical solution for horizontal seismic response of single piles to vertically incident S waves [J]. Rock and Soil Mechanics, 2023, 44(2): 327-336.
[4] ZHOU Xiang, CAI Jing-sen, MA Wei-cheng, XIAO Hao-wen, . Influence of material composition characteristics on the deformation and failure of gravel soil slopes [J]. Rock and Soil Mechanics, 2023, 44(2): 531-540.
[5] YU Jun, ZHANG Zhi-zhong, ZHENG Jing-fan, HE Zhen. Analytical solution of pore pressure in seepage field of foundation pit with a sealed bottom under water level fluctuation [J]. Rock and Soil Mechanics, 2023, 44(12): 3415-3423.
[6] HUANG Shao-ping, CHEN Jun-yi, XIAO Heng-lin, TAO Gao-liang. Test on rules of rainfall infiltration and runoff erosion on vegetated slopes with different gradients [J]. Rock and Soil Mechanics, 2023, 44(12): 3435-3447.
[7] YU Jun, ZHANG Yang, ZHENG Jing-fan, ZHANG Zhi-zhong. Analytical solution of two-dimensional steady-state seepage field in a pit considering a phreatic surface [J]. Rock and Soil Mechanics, 2023, 44(11): 3109-3116.
[8] LI Jiong, LI Ming-guang, ZHAN Hong-bing, CHEN Jin-jian, XIA Xiao-he, ZHANG Shuo. Semi-analytical solutions for groundwater flow dynamics in confined aquifers under constant-rate injection considering clogging of aquifers around well [J]. Rock and Soil Mechanics, 2023, 44(10): 2871-2878.
[9] ZHU Sai-nan, CHEN Yan-hua, WANG Ning, LI Wei-hua, ZHANG Wei-wei. Analytical solution of imperfect contact effect at the interface between undersea tunnel and seabed soil under plane P1 waves incidence [J]. Rock and Soil Mechanics, 2023, 44(10): 3049-3058.
[10] SHI Lan-tian, LI Chuan-xun, YANG Yang. Analytical solution for consolidation of soft soils with vertical drains by considering variable well resistance with time and depth and time-dependent loading [J]. Rock and Soil Mechanics, 2023, 44(1): 183-192.
[11] QIN Ai-fang, MENG Hong-ping, JIANG Liang-hua. Analysis of axisymmetric consolidation characteristics of unsaturated soils under surcharge loading and electro-osmosis [J]. Rock and Soil Mechanics, 2022, 43(S1): 97-106.
[12] WANG Lei, ZHANG Li-ting, SHEN Si-dong, XU Yong-fu, XIA Xiao-he, . Axisymmetric consolidation characteristics for unsaturated soils under piece-wise cyclic load [J]. Rock and Soil Mechanics, 2022, 43(S1): 203-212.
[13] ZHAI Zhang-hui, ZHANG Ya-guo, LI Tong-lu, XIAO Shu-xiong, . Solution for cylindrical cavity expansion in unsaturated soils considering boundary effect [J]. Rock and Soil Mechanics, 2022, 43(S1): 301-311.
[14] LIAO Wen-wang, JI Jian, ZHANG Tong, WU Zhi-jun, ZHANG Jie, . Time-dependent hazard assessment of rainfall-induced shallow landslides considering the spatial variability of soil permeability [J]. Rock and Soil Mechanics, 2022, 43(S1): 623-632.
[15] WANG Zu-xian, SHI Cheng-hua, GONG Chen-jie, CAO Cheng-yong, LIU Jian-wen, PENG Zhu, . Analytical method to estimate the influence of foundation pit excavation adjacent to the station (working shaft) on the underlying shield tunnel [J]. Rock and Soil Mechanics, 2022, 43(8): 2176-2190.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Kui, GAO Bo. Study of construction schemes for metro tunnel crossing river and bridge[J]. , 2010, 31(5): 1509 -1516 .
[2] YANG Bing, YANG Jun, CHANG Zai, GAN Hou-yi, SONG Er-xiang. 3-D granular simulation for compressibility of soil-aggregate mixture[J]. , 2010, 31(5): 1645 -1650 .
[3] XIAO Shi-guo,XIAN Fei,WANG Huan-long. 一种微型桩组合抗滑结构内力分析方法[J]. , 2010, 31(8): 2553 -2559 .
[4] YE Hai-lin, ZHENG Ying-ren, HUANG Run-qiu, DU Xiu-li, LI An-hong4, XU Jiang-bo. Study of application of strength reduction dynamic analysis method to aseismic design of anti-slide piles for landslide[J]. , 2010, 31(S1): 317 -323 .
[5] ZHANG Zhi-pei, PENG Hui, RAO Xiao. Numerical simulation study of grouting diffusion process in soft soil foundation[J]. , 2011, 32(S1): 652 -0655 .
[6] WU Li-zhou , ZHANG Li-min , HUANG Run-qiu. Analytic solution to coupled seepage in layered unsaturated soils[J]. , 2011, 32(8): 2391 -2396 .
[7] LIU Run , WANG Xiu-yan , LIU Yue-hui , WANG Wu-gang. Thermal buckling analysis of submarine buried pipelines with isolated prop initial imperfection[J]. , 2011, 32(S2): 64 -69 .
[8] LIANG Yao-zhe. Analysis of active earth pressure of rigid pile composite foundation[J]. , 2012, 33(S1): 25 -29 .
[9] HAN Jian-xin , LI Shu-cai , LI Shu-chen , YANG Wei-min , WANG Lei . Study of post-peak stress-strain relationship of rock material based on evolution of strength parameters[J]. , 2013, 34(2): 342 -346 .
[10] HUANG Da , CEN Duo-feng , HUANG Run-qiu . Influence of medium strain rate on sandstone with a single pre-crack under uniaxial compression using PFC simulation[J]. , 2013, 34(2): 535 -545 .