Rock and Soil Mechanics ›› 2023, Vol. 44 ›› Issue (1): 193-205.doi: 10.16285/j.rsm.2022.0261

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Prediction of thermal conductivity of unsaturated frozen soil based on microstructure remodeling

HUANG Xian-wen1, 2, YAO Zhi-shu2, CAI Hai-bing2, LI Kai-qi3, TANG Chu-xuan4   

  1. 1. School of Civil Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu 215000, China; 2. School of Civil Engineering, Anhui University of Science and Technology, Huainan, Anhui 232000, China; 3. School of Water Resources and Hydropower, Wuhan University, Wuhan, Hubei 430072, China; 4. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
  • Received:2022-03-07 Accepted:2022-07-22 Online:2023-01-16 Published:2023-01-13
  • Supported by:
    This work was supported by China Scholarship Council (202108340062) and the National Natural Science Foundation of China (52174104, 51778004).

Abstract: In order to accurately predict the thermal conductivity of unsaturated frozen soil, the characteristic structure identification method and reconstruction method of unsaturated frozen soil were proposed based on the soil microstructure images, and the prediction model of the thermal conductivity of unsaturated frozen soil was established by combining these methods and the conventional finite element method. Through scanning electron microscope (SEM) images, the content, size and distribution probability of each component were identified by antidromic quartet structure generation set (AQSGS) method. A multi-element quartet structure generation set method considering soil, water, ice and gas (MQSGS method) was proposed to improve the conventional quartet structure generation set (QSGS) method. Based on the established unsaturated frozen soil model, the thermal conductivity of unsaturated frozen soil was obtained through Monte Carlo method, and compared with the thermal conductivity of frozen soil in the specification, which verified the rationality of the prediction model (average error <4%). The influences of porosity, particle size, soil particle thermal conductivity, degree of saturation and freezing rate on the thermal conductivity of unsaturated frozen soil were studied by multi-factor analysis. The correlation coefficients between each influencing factor and thermal conductivity were −0.352, −0.098, 0.641, 0.52 and 0.06, respectively. The influence sequences were soil particle thermal conductivity > degree of saturation > porosity > soil particle size > freezing rate. The effects of various influencing factors on the thermal conductivity of unsaturated frozen soil can be summarized as the influences on the density, width, connectivity, heat flow capacity of "thermal chain" formed by heat flux and "thermal bridge" flux.

Key words: unsaturated frozen soil, microstructure simulation, structural correlation, quartet structure generation set method, Monte Carlo method, thermal conductivity

CLC Number: 

  • TU 411
[1] GUI Yue, XIE Zheng-peng, GAO Yu-feng, . Influence and mechanism of organic matter on thermal conductivity of clay soil [J]. Rock and Soil Mechanics, 2023, 44(增刊): 154-162.
[2] ZENG Zhao-tian, LIANG Zhen, SHAO Jie-sheng, XU Yun-shan, LÜ Hai-bo, PAN Bin, . Experimental study on thermal conductivity of MX80 bentonite under alkali-thermal environment [J]. Rock and Soil Mechanics, 2022, 43(S2): 155-162.
[3] ZENG Zhao-tian, LIANG Zhen, SUN Ling-yun, FU Hui-li, FAN Li-yun, PAN Bin, YU Hai-hao, . Experimental study on the influence factors of thermal conductivity of cement-bonded calcareous sand [J]. Rock and Soil Mechanics, 2022, 43(S1): 88-96.
[4] OU Xiao-duo, GAN Yu, PAN Xin, JIANG Jie, QIN Ying-hong, . Experimental study on thermal conductivity of remodel expansive rock and its influence factors [J]. Rock and Soil Mechanics, 2022, 43(S1): 367-374.
[5] JIN Zong-chuan, WANG Xue-qing, WU Xiao-ming, PENG Yun, . Testing and analysis of soil thermal parameters and their influencing factors [J]. Rock and Soil Mechanics, 2022, 43(5): 1335-1340.
[6] HU Yun-shi, XU Yun-shan, SUN De-an, CHEN Bo, ZENG Zhao-tian, . Temperature dependence of thermal conductivity of granular bentonites [J]. Rock and Soil Mechanics, 2021, 42(7): 1774-1782.
[7] YANG Gao-sheng, BAI Bing, YAO Xiao-liang, CHEN Pei-pei, . Smoothed particle hydrodynamics for simulation of water vapor migration and phase change in unsaturated frozen soil [J]. Rock and Soil Mechanics, 2021, 42(1): 291-300.
[8] ZHANG Hu-yuan, ZHAO Bing-zheng, TONG Yan-mei, . Thermal conductivity and uniformity of hybrid buffer blocks [J]. Rock and Soil Mechanics, 2020, 41(S1): 1-8.
[9] XU Yun-shan, SUN De-an, ZENG Zhao-tian, LÜ Hai-bo, . Temperature effect on thermal conductivity of bentonites [J]. Rock and Soil Mechanics, 2020, 41(1): 39-45.
[10] TAN Yun-zhi, PENG Fan, QIAN Fang-hong, SUN De-an, MING Hua-jun, . Optimal mixed scheme of graphite-bentonite buffer material [J]. Rock and Soil Mechanics, 2019, 40(9): 3387-3396.
[11] HUANG Sheng-gen, SHEN Jia-hong, LI Meng, . Reliability analysis of bearing capacity of post-grouted bored piles [J]. Rock and Soil Mechanics, 2019, 40(5): 1977-1982.
[12] FEI Suo-zhu, TAN Xiao-hui, SUN Zhi-hao, DU Lin-feng. Analysis of autocorrelation distance of soil based on microstructure simulation [J]. Rock and Soil Mechanics, 2019, 40(12): 4751-4758.
[13] REN Lian-wei, KONG Gang-qiang, HAO Yao-hu, LIU Han-long, . Study of soil comprehensive thermal conductivity coefficient based on field test of energy pile [J]. Rock and Soil Mechanics, 2019, 40(12): 4857-4864.
[14] XU Yun-shan, SUN De-an, ZENG Zhao-tian, LÜ Hai-bo, . Experimental study on aging effect on bentonite thermal conductivity [J]. Rock and Soil Mechanics, 2019, 40(11): 4324-4330.
[15] XIE Jing-li, MA Li-ke, GAO Yu-feng, CAO Sheng-fei, LIU Yue-miao. Thermal conductivity of mixtures of Beishan bentonite and crushed granite [J]. , 2018, 39(8): 2823-2828.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[2] LIANG Gui-lan, XU Wei-ya, TAN Xiao-long. Application of extension theory based on entropy weight to rock quality evaluation[J]. , 2010, 31(2): 535 -540 .
[3] MA Wen-tao. Forecasting slope displacements based on grey least square support vector machines[J]. , 2010, 31(5): 1670 -1674 .
[4] YU Lin-lin,XU Xue-yan,QIU Ming-guo, LI Peng-fei,YAN Zi-li. Influnce of freeze-thaw on shear strength properties of saturated silty clay[J]. , 2010, 31(8): 2448 -2452 .
[5] WANG Wei, LIU Bi-deng, ZHOU Zheng-hua, WANG Yu-shi, ZHAO Ji-sheng. Equivalent linear method considering frequency dependent stiffness and damping[J]. , 2010, 31(12): 3928 -3933 .
[6] WANG Hai-bo,XU Ming,SONG Er-xiang. A small strain constitutive model based on hardening soil model[J]. , 2011, 32(1): 39 -43 .
[7] CAO Guang-xu, SONG Er-xiang, XU Ming. Simplified calculation methods of post-construction settlement of high-fill foundation in mountain airport[J]. , 2011, 32(S1): 1 -5 .
[8] LIU Hua-li , ZHU Da-yong , QIAN Qi-hu , LI Hong-wei. Analysis of three-dimensional end effects of slopes[J]. , 2011, 32(6): 1905 -1909 .
[9] LIU Nian-ping , WANG Hong-tu , YUAN Zhi-gang , LIU Jing-cheng. Fisher discriminant analysis model of sand liquefaction and its application[J]. , 2012, 33(2): 554 -557 .
[10] WANG Wei-dong , LI Yong-hui , WU Jiang-bin . Pile-soil interface shear model of super long bored pile and its FEM simulation[J]. , 2012, 33(12): 3818 -3824 .