Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (9): 2493-2503.doi: 10.16285/j.rsm.2022.0407

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study of fracture dynamic evolution process of grouting specimen under uniaxial compression based on CT scanning

ZHU Chang-xing, SUN Jia-xin, WANG Yan-wei   

  1. School of Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China
  • Received:2022-03-31 Revised:2022-05-27 Online:2022-09-12 Published:2022-09-12
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51874119), the Department of Education Project of Henan Province (2011A440003) and the Doctorate Fund of Henan Polytechnic University (B2009-96).

Abstract:

To study the fracture dynamic evolution process of grouting specimens under loading conditions, the graded gravel grouting specimen was periodically scanned during the uniaxial compression damage process using a CT scanning system. Based on the image reconstruction technique, the spatial visualization of the fracture structure inside the test grouting specimen block is achieved, and the structural characteristic parameters are characterized quantitatively such as the number and volume of fractures. The gray value and fractal dimension of the CT slices are calculated using Python programming to analyze the mesoscale damage extent at different loading stages of the grouting specimen. It is shown that the specimen’s internal fracture volume shows a trend of slow rise, slow fall, slow rise, and rapid rise. The fracture number shows a trend of increasing firstly and then decreasing during the whole compression stage. When the fracture expansion paths encounter gravel, most of the fractures expand around the gravel location and few fractures expand through the gravel. In addition, the fracture bifurcation expansion mostly appears at the interface between the cement matrix and gravel. The specimen damage process could be divided into four stages in terms of the fracture evolution process inside the specimen: initial defect expansion stage, internal crack compacting stage, fracture expansion stage, and fracture penetration stage. For the slice at the same loading stage of the test specimen, it is found that the value of the damage variable and fractal dimension shows a certain positive correlation, which is similar to the trends of the fracture volume evolution. The research results can provide a reference for the study of the failure process and fracture evolution law of the grouting body.

Key words: CT scan, grouting body, digital reconstruction, fracture evolution, quantitative characterization

CLC Number: 

  • TU452
[1] SHEN Jia-wei, ZHOU Bo, FU Ru, KU Quan, WANG Hua-bin, . Experimental study on single particle crushing strength and patterns of calcareous sand [J]. Rock and Soil Mechanics, 2022, 43(S1): 312-320.
[2] WANG Ben-xin, JIN Ai-bing, SUN Hao, WANG Shu-liang, . Study on fracture mechanism of specimens with 3D printed rough cross joints at different angles based on DIC [J]. Rock and Soil Mechanics, 2021, 42(2): 439-450.
[3] JIN Ai-bing, JU You, SUN Hao, ZHAO Yi-qing, LI Hai, ZHANG Zhou, LU Tong, . Pore structure and strength deterioration mechanism of phase change energy storage backfill [J]. Rock and Soil Mechanics, 2021, 42(10): 2623-2633.
[4] WANG Wei, LIANG Xuan-yu, ZHANG Ming-tao, JIA Ze-yu, ZHANG Si-yi, WANG Qi-zhi. Experimental study on failure mechanism and crack density of sandstone under combined dynamic and static loading [J]. Rock and Soil Mechanics, 2021, 42(10): 2647-2658.
[5] ZHANG Yan-bo, XU Yue-dong, LIU Xiang-xin, YAO Xu-long, WANG Shuai, LIANG Peng, SUN Lin, TIAN Bao-zhu, . Quantitative characterization and mesoscopic study of propagation and evolution of three-dimensional rock fractures based on CT [J]. Rock and Soil Mechanics, 2021, 42(10): 2659-2671.
[6] WANG Ben-xin, JIN Ai-bing, WANG Shu-liang, SUN Hao, . Mechanical characteristics and fracture mechanism of 3D printed rock samples with cross joints [J]. Rock and Soil Mechanics, 2021, 42(1): 39-49.
[7] LUO Zhao-gang, WANG Shi-ji, YANG Zhen-bei, . Quantitative analysis of fracture evolution of expansive soils under wetting-drying cycles [J]. Rock and Soil Mechanics, 2020, 41(7): 2313-2323.
[8] HOU Zhi-qiang, WANG Yu, LIU Dong-qiao, LI Chang-hong, LIU Hao. Experimental study of mechanical properties of marble under triaxial unloading confining pressure after fatigue loading [J]. Rock and Soil Mechanics, 2020, 41(5): 1510-1520.
[9] PENG Jia-yi, ZHANG Jia-fa, SHEN Zhen-zhong, YE Jia-bing, . Effect of grain shape on pore characteristics and permeability of coarse-grained soil [J]. Rock and Soil Mechanics, 2020, 41(2): 592-600.
[10] MA Dong-dong, CHEN Qing, ZHOU Hui, TENG Qi, LI Ke, HU Da-wei, . Experimental study of liquid CO2 fracturing mechanism of glutenite [J]. Rock and Soil Mechanics, 2020, 41(12): 3996-4004.
[11] YI Xue-feng, LIU Chun-kang, WANG Yu. Experimental study on the fracture evolution of cemented waste rock-tailings backfill (CWRB) of metal ore using in-situ CT scanning [J]. Rock and Soil Mechanics, 2020, 41(10): 3365-3373.
[12] CAI Zheng-yin, ZHU Xun, HUANG Ying-hao, ZHANG Chen. Influences of freeze-thaw process on evolution characteristics of fissures in expensive soils [J]. Rock and Soil Mechanics, 2019, 40(12): 4555-4563.
[13] LI Jing, KONG Xiang-chao, SONG Ming-shui, WANG Yong, WANG Hao, LIU Xu-liang, . Study on the influence of reservoir rock micro-pore structure on rock mechanical properties and crack propagation [J]. Rock and Soil Mechanics, 2019, 40(11): 4149-4156.
[14] WANG Ben-xin, JIN Ai-bing, ZHAO Yi-qing, WANG He, SUN Hao, LIU Jia-wei, WEI Yu-dong, . Fracture law of 3D printing specimen with non-consecutive joints based on CT scanning [J]. Rock and Soil Mechanics, 2019, 40(10): 3920-3927.
[15] WU Tian-hua, ZHOU Yu, WANG Li, SUN Jin-hai, ZHAO Huan, SUN Zheng, . Mesoscopic study of interaction mechanism between circular hole and fissures in rock under uniaxial compression [J]. Rock and Soil Mechanics, 2018, 39(S2): 463-472.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .