Rock and Soil Mechanics ›› 2023, Vol. 44 ›› Issue (1): 144-158.doi: 10.16285/j.rsm.2022.0937

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Dynamic behaviors and deterioration characteristics of coal under different initial gas pressures

WANG Lei1, CHEN Li-peng1, LIU Huai-qian1, 2, ZHU Chuan-qi1, LI Shao-bo1, FAN Hao1, ZHANG Shuai1, WANG An-cheng1   

  1. 1. State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mine, Anhui University of Science and Technology, Huainan, Anhui 232001, China; 2. School of Energy and Mining Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
  • Received:2022-06-20 Accepted:2022-08-26 Online:2023-01-16 Published:2023-01-13
  • Supported by:
    This work was supported by Anhui Province Science and Technology Major Special Projects (202203a07020010) and the Collaborative Innovation Funding Project of Anhui Universities (GXXT-2020-055).

Abstract: In order to investigate the dynamic behaviors of coal and its deterioration law under different initial gas pressures, this study conducted impact compression experiments on gas-bearing coal by using the self-developed visualized gas-bearing coal rock dynamic and static combined loading test system, analyzed the expansion and evolution law of internal fracture in gas-bearing coal by combining with CT scanning system. Moreover, this study also quantitatively characterized the mesoscopic damage degree based on the increment of internal fracture rate of coal samples impacted under different initial gas pressures, and explored the deterioration law of macroscopic mechanical parameters of gas-bearing coal under the impact load. Some conclusions are drawn. (1) The dynamic stress-strain curves of gas-bearing coal under impact loading, which can be divided into linear elastic phase, plastic hardening phase and damage phase, have no obvious compaction phase. And it is found that the peak strength, peak strain and elastic modulus of impacted coal samples deteriorate with the increase of initial gas pressure. (2) Gas aggravates the expansion and coalescence of fractures inside the coal. CT scanning results indicate that the impact damage mode of gas-bearing coal is mainly splitting and stratified splitting damages, and the more significant the two damage modes are with the increase of initial gas pressure, so does the number of fractures and their damage degree inside the coal, which makes the spatial fracture network more complex. (3) The damage variables are defined on a mesoscopic level, and the values of damage variables show a rise of quadratic function with the increase of initial gas pressure. The comparison of the dynamic strength of coal under impact load with the theoretical strength obtained by defining the degree of damage by fracture rate increment verified the rationality of the damage variables defined by fracture rate increment of coal at the mesoscopic level. The intrinsic connection was constructed between the mesoscopic deterioration of gas-bearing coal and the loss of macroscopic parameters. The research results enrich the basic theory of gas-bearing coal dynamics and provide a theoretical reference for the prevention and control of coal-rock-gas composite dynamical hazards in mines.

Key words: gas-bearing coal, dynamic properties, industrial CT scanning, fractures, damage variables

CLC Number: 

  • TD 325
[1] WANG Lei, ZHANG Shuai, LIU Huai-qian, CHEN Li-peng, ZHU Chuan-qi, LI Shao-bo, WANG An-cheng. Research on energy dissipation and damage failure law of gas-bearing coal under impact loading [J]. Rock and Soil Mechanics, 2023, 44(7): 1901-1915.
[2] FAN Jie, ZHU Xing, HU Ju-wei, TANG Yao, HE Chun-lei, . Experimental study on crack propagation and damage monitoring of sandstone using three-dimensional digital image correlation technology [J]. Rock and Soil Mechanics, 2022, 43(4): 1009-1019.
[3] WANG Ming-yu, LIU Qing-zhe, QU Ci-xiao, LI Jin-zhu, . Experimental investigation on the seepage flow through a single fracture in rocks based on the disc fracture model [J]. Rock and Soil Mechanics, 2020, 41(11): 3523-3530.
[4] WANG Pei-tao, HUANG Zheng-jun, REN Fen-hua, ZHANG Liang, CAI Mei-feng, . Research on direct shear behaviour and fracture patterns of 3D-printed complex jointed rock models [J]. Rock and Soil Mechanics, 2020, 41(1): 46-56.
[5] CHEN Wei-zhong, LEI Jiang, YU Hong-dan, LI Fan-fan, MA Yong-shang, YAN Xian-yang, . Experiment on moisture migration in saturation process of clayey rock [J]. Rock and Soil Mechanics, 2019, 40(9): 3327-3334.
[6] LI Bo, HUANG Jia-lun, ZHONG Zhen, ZOU Liang-chao, . Numerical simulation on hydraulic and solute transport properties of 3D crossed fractures [J]. Rock and Soil Mechanics, 2019, 40(9): 3670-3768.
[7] YUAN Liang, LIU Ye-jiao, TIAN Zhi-chao, TANG Chun-an, XUE Jun-hua, DUAN Chang-rui, ZHANG Han, . Numerical test and application of gas pre-drainage in an extra-thick seam by using ground vertical boreholes [J]. Rock and Soil Mechanics, 2019, 40(1): 370-378.
[8] LI Yu-dan, DONG Ping-chuan, ZHOU Da-wei, WU Zi-seng, WANG Yang, CAO Nai. A dynamic model of apparent permeability for micro fractures in shale gas reservoirs [J]. , 2018, 39(S1): 42-50.
[9] WANG Pei-tao, REN Fen-hua, TAN Wen-hui, YAN Zhen-xiong, CAI Mei-feng, YANG Tian-hong.. Model of roughness discrete fractures network for uniaxial compressive test and its mechanical properties [J]. , 2017, 38(S1): 70-78.
[10] ZHANG Wen-quan, YUAN Jiu-dang, WANG Zhong-chang, ZHU Ji-ming,. An experimental study on compressive shear seepage laws of mining-induced fractured rock mass [J]. , 2017, 38(9): 2473-2479.
[11] ZHANG Yan, YE Jian-hong, JI Hong-guang, WANG Jin-an,. Identifying the development of mining-induced fractures zone using dynamic stress tracing method [J]. , 2016, 37(11): 3291-3298.
[12] CHENG Li-chao , XU Jiang , FENG Dan , TIAN Ao-xue , LIU Yi-xin,. Effect of binder content on mesoscopic damage mechanical characteristics of gas-bearing coal subjected to shear load [J]. , 2015, 36(9): 2467-2477.
[13] JIANG Jin-quan, DAI Jin, WANG Pu, ZHANG Lin-liang. Overlying hard and thick strata breaking movement and broken-roof control [J]. , 2014, 35(S1): 264-270.
[14] LI Ming , MAO Xian-biao , CAO Li-li , MAO Rong-rong , TAO Jing,. Experimental study of mechanical properties on strain rate effect of sandstones after high temperature [J]. , 2014, 35(12): 3479-3488.
[15] HAN Gang , ZHAO Qi-hua , PENG She-qin. In-situ stress field evolution of deep fracture rock mass at dam area of Baihetan hydropower station [J]. , 2011, 32(S1): 583-0589.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHAO Chun-yan, ZHOU Shun-hua, YUAN Jian-yi. Calculation and analysis of settlement time-dependency of soil compaction pile based on one-dimensional and three-dimensional consolidations[J]. , 2009, 30(9): 2629 -2632 .
[2] YANG Tao,ZHOU De-pei,MA Hui-min,ZHANG Zhong-ping. Point safety factor method for stability analysis of landslide[J]. , 2010, 31(3): 971 -975 .
[3] LI Wen-pei, WANG Ming-yang, FAN Peng-xian. Research on bearing capacity of tunnel surrounding rock based on discontinuous displacement field[J]. , 2010, 31(8): 2441 -2447 .
[4] ZHANG Ju-lian, SHEN Ming-rong. Sand liquefaction prediction based on stepwise discriminant analysis[J]. , 2010, 31(S1): 298 -302 .
[5] PENG Ming-xiang. Coulumb's unified solution of active earth pressure on retaining wall[J]. , 2009, 30(2): 379 -386 .
[6] YANG Ye, LIU Song-yu, DENG Yong-feng. Effect of reinforced subgrade on differential settlement by model test research[J]. , 2009, 30(3): 703 -706 .
[7] ZHENG Gang, YAN Zhi-xiong, LEI Hua-yang, WANG Sheng-tang. Experimental studies of unloading mechanical properties of silty clay of first marine layer in Tianjin city[J]. , 2009, 30(5): 1201 -1208 .
[8] DAI Hong-jun, LIU Xin-liang, REN Zhi-jun, WEI Hua. Prototype testing study of pile-net composite foundation of circular coal yard[J]. , 2011, 32(2): 487 -494 .
[9] JIANG Qing-hui , DENG Shu-shen , ZHOU Chuang-bing. Three-dimensional numerical manifold method for seepage problems with free surfaces[J]. , 2011, 32(3): 879 -884 .
[10] XU Chao , CHEN Zhong-qing , YE Guan-bao , XIAO Yuan-yuan , DING Tian-rui. Experimental research on ground improvement of silt using impact roller compaction[J]. , 2011, 32(S2): 389 -392 .