Rock and Soil Mechanics ›› 2023, Vol. 44 ›› Issue (11): 3203-3212.doi: 10.16285/j.rsm.2022.1732

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Meso-structure damage evolution in shear bands of granite residual soil

LI Cheng-sheng1, 2, KONG Ling-wei2, SHU Rong-jun2, LIU Zhi-jun1, ZHANG Bing-xin1   

  1. 1. Department of Civil and Environmental Engineering, Shantou University, Shantou, Guangdong 515000, China; 2. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
  • Received:2022-11-03 Accepted:2023-01-03 Online:2023-11-28 Published:2023-11-28
  • Supported by:
    This work was supported by the Special Fund for Science and Technology of Guangdong Province in 2021 (STKJ2021181), the Building Fund for the Academic Innovation Team of Shantou University (NTF21017) and the National Natural Science Foundation of China (12272394).

Abstract: Shear band and crack evolution are very important for landslides. Crack is the weakest area in soil, and there is a lack of effective methods to analyze the meso-structure damage in shear bands quantitatively. To reveal the influence of cracks in granite residual soil on shear deformation and failure, CT scanning was used to obtain volume images of the sample at different loading stages during triaxial loading. Based on the digital volume correlation (DVC) method, a crack classification method is established according to the connectivity characteristics of cracks before and after loading. The cracks can be divided into eight kinds: obsolete, brand-new, isolated, split, combined, compound-brand-new, compound-isolated, and compound-mixed cracks. The results show that the brand-new cracks and compound-type cracks are closely related to the shear band evolution. With the increase of axial strain, the brand-new cracks and compound-brand-new cracks are in an increasing trend. When axial strain is 12%, the volume content of the brand-new cracks is more than 50%, the compound-isolated cracks exhibit rapid attenuation, and the compound-mixed cracks tend to increase first and then decrease. At the early stage of shear band initiation, a few new cracks are formed in the shear band, which accelerates the development of the shear band as the cracks are the weakest area. With the development of the shear band, a large number of new cracks cause more serious damage to the meso-structure in the shear band. Finally, the coupling effect of shear bands and cracks destroys the soil strength.

Key words: granite residual soil, CT, shear band, crack classification, damage

CLC Number: 

  • TU 447
[1] LEI Hua-yang, YANG Yang, XU Ying-gang, . Experimental study on stratum disturbance of shield construction under different tunnel depth conditions [J]. Rock and Soil Mechanics, 2024, 45(S1): 1-12.
[2] LAI Han-jiang, LIU Run-ming, CHEN Zhi-bo, CUI Ming-juan, . Effect of grain size on biocementation of sand using crude soybean urease [J]. Rock and Soil Mechanics, 2024, 45(S1): 25-32.
[3] XU Hai-liang, TAN An-fu, SONG Yi-min, AN Dong, ZHANG Yuan-yu, DU Yu, GAO Han-jun. Sliding deformation and failure characteristics of layered composite rocks [J]. Rock and Soil Mechanics, 2024, 45(S1): 42-52.
[4] WANG Li-yan, JIANG Fei, ZHUANG Hai-yang, WANG Bing-hui, ZHANG Lei, LI Ming, . Dynamic characteristics and microscopic analysis of rubber-steel slag filler considering the influence of hydration period [J]. Rock and Soil Mechanics, 2024, 45(S1): 53-62.
[5] ZHU En-yang, CHEN Yu-kun. Unified hardening model for structured soft clay considering loading rate [J]. Rock and Soil Mechanics, 2024, 45(S1): 63-72.
[6] CHENG Jia-lin, ZHANG Gui-ke, DENG Shao-hui, HUANG Xi-wen, ZHOU Wei, MA Gang, . Effect of cyclic wetting-drying on the crushing strength of rockfill grains with different sizes [J]. Rock and Soil Mechanics, 2024, 45(S1): 95-105.
[7] LIU Ji-fu. A new method for analyzing stability of drainage consolidation embankments [J]. Rock and Soil Mechanics, 2024, 45(S1): 106-114.
[8] SUN Jie-hao, GUO Bao-hua, TIAN Shi-xuan, CHENG Tan, . Experimental study of direct shear failure characteristics of sandstone joints based on characteristic parameters of acoustic emission [J]. Rock and Soil Mechanics, 2024, 45(S1): 167-177.
[9] LI Shi-chang, LI Jian, YU Fei, GENG Yun, YANG Qi-zhi, WANG Jiang-chen, . Analysis of small deformation characteristics of the interface between clay and concrete under pre-peak constant shear stress amplitude [J]. Rock and Soil Mechanics, 2024, 45(S1): 208-216.
[10] ZHENG Si-wei, HU Ming-jian, HUO Yu-long, . Factors affecting permeability of calcareous sands and predictive models [J]. Rock and Soil Mechanics, 2024, 45(S1): 217-224.
[11] CHENG Xin, JIANG Wen-hao, HUANG Xiao, LI Shuang, WANG Ying-fu, LI Jiang-shan, . Engineering properties and microstructural evolution of self-hardening vertical barrier materials under the influence of Cr(VI) contaminated solution [J]. Rock and Soil Mechanics, 2024, 45(S1): 225-238.
[12] ZHANG Da-wei, LI Hao-ze, LIU Fei-yu, FENG Min. Effect of particle size ratio on shear characteristics of rubber-sand mixture subject to two-way cyclic loading [J]. Rock and Soil Mechanics, 2024, 45(S1): 239-247.
[13] FAN Hao, WANG Lei, LUO Yong, ZHU Chuan-qi, . Experimental study on triaxial creep characteristics of unloading-damaged sandstone under step loading [J]. Rock and Soil Mechanics, 2024, 45(S1): 277-288.
[14] ZHOU Huan-zhu, LIU Sheng-an, LI Bin, CHEN Wei-yun, SU Lei, ZHENG Jun-jie, ZHENG Ye-wei, . Analytical solution of seismic response of flexible joint of immersed tunnel crossing different strata [J]. Rock and Soil Mechanics, 2024, 45(S1): 289-298.
[15] LI Yong-wei, XU Lin-rong, FU Jin-yang, SHANG Yong-hui, . Seepage failure mechanism of railway subgrade filling materials under train loading [J]. Rock and Soil Mechanics, 2024, 45(S1): 299-308.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiao,TANG Hui-ming,LIU Yu. A new model for landslide displacement prediction based on set pair analysis and fuzzy-Markov chain[J]. , 2009, 30(11): 3399 -3405 .
[2] HU Da-wei, ZHOU Hui, XIE Shou-yi, ZHANG Kai, SHAO Jian-fu, FENG. Study of Biot’s coefficients of marble during plastic deformation phase[J]. , 2009, 30(12): 3727 -3732 .
[3] SHI Xu-chao,HAN Yang. Water absorption test of soft clay after rebound under unloading[J]. , 2010, 31(3): 732 -736 .
[4] YUAN Xi-zhong, LI Ning , ZHAO Xiu-yun, YANG Yin-tao. Analysis of sensitivity of frozen ground bearing capacity to climate change in Northeast China permafrost regions[J]. , 2010, 31(10): 3265 -3272 .
[5] BAI Bing, LI Xiao-chun, SHI Lu, TANG Li-zhong. Slope identity of elastoplastic stress-strain curve and its verification and application[J]. , 2010, 31(12): 3789 -3792 .
[6] TANG Li-min. Regularization algorithm of foundation settlement prediction model[J]. , 2010, 31(12): 3945 -3948 .
[7] LI Zhan-hai,ZHU Wan-cheng,FENG Xia-ting,LI Shao-jun,ZHOU Hui,CHEN Bing-rui. Effect of lateral pressure coefficients on damage and failure process of horseshoe-shaped tunnel[J]. , 2010, 31(S2): 434 -441 .
[8] CAI Hui-teng, WEI Fu-quan, CAI Zong-wen. Study of silty clay dynamic characteristics in Chongqing downtown area[J]. , 2009, 30(S2): 224 -228 .
[9] SONG Ling , LIU Feng-yin , LI Ning . On mechanism of rotary cone penetration test[J]. , 2011, 32(S1): 787 -0792 .
[10] JIN Jie-fang , LI Xi-bing , YIN Zhi-qiang , ZOU Yang. A method for defining rock damage variable by wave impedance under cyclic impact loadings[J]. , 2011, 32(5): 1385 -1393 .