Rock and Soil Mechanics ›› 2024, Vol. 45 ›› Issue (2): 465-476.doi: 10.16285/j.rsm.2023.0475

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Evolution of excess pore pressure and flow liquefaction responses of fibre reinforced sand under undrained cyclic loading

ZHANG Xi-dong1, 2, DONG Xiao-qiang1, 2, DUAN Wei1, 2, HU Shun-lei1, 2, ZHANG Hao-ru1, 2   

  1. 1. School of Civil Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China; 2. Key Laboratory of Civil Engineering Disaster Prevention and Control in Shanxi Province, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
  • Received:2023-04-17 Accepted:2023-04-17 Online:2024-02-11 Published:2024-02-07
  • Supported by:
    This work was supported by the Fundamental Research Scheme of Science and Technology Committee in Shanxi Province for Young Scholar, China (20210302124110), the China Postdoctoral Science Foundation (2022M712338) and the National Natural Science Foundation of China (52208362, 52108332, 51978438, 52281340410).

Abstract: By conducting undrained cyclic triaxial tests on fibre-reinforced very loose and loose saturated sand, we investigated the build-up of excess pore pressure and the flow liquefaction responses. The test results show that unreinforced very loose and loose saturated sand has a high potential for liquefaction, with flow liquefaction occurring in all unreinforced samples under undrained cyclic loading. The presence of fibre reinforcement has a positive impact on the resistance to flow liquefaction of sand. Fibres provide both a densifying effect and a confining effect to the sand skeleton. However, the confining effect of fibres depends on the loading path imposed on the samples and the deformation mode of the samples. The presence of fibres alters the evolution law of the residual excess pore pressure in saturated sand. When fibres impose a strong confining effect on the sand skeleton, the evolution of residual excess pore pressure along with the normalized loading cycles follows a curve with an ‘inverted L’ shape, being significantly different from an ‘S’ shape curve which is followed by the unreinforced sand. Under the two-way symmetrical and one-way cyclic loading, the significant fibre stress contribution is mobilized, leading to the effective stress of the sand skeleton being much greater than 0 after the 100% build-up of excess pore pressure. As a result, the strength loss of the reinforced sample remains below 11% and thus the fibres prevent liquefaction from developing.

Key words: fibre-reinforcement, sand, flow liquefaction, residual excess pore pressure, strength loss, effective stress

CLC Number: 

  • TU 441
[1] ZHANG Xi-dong, DONG Xiao-qiang, DUAN Wei, XIE Ming-xing, . Excess pore pressure ratios for the assessment of static liquefaction in fiber-reinforced sand [J]. Rock and Soil Mechanics, 2024, 45(3): 714-724.
[2] ZHANG Ji-ru, CHEN Jing-xin, WANG Lei, PENG Wei-ke . Effect of drainage conditions during triaxial shearing on particle breakage, deformation, and strength properties of calcareous sand [J]. Rock and Soil Mechanics, 2024, 45(2): 375-384.
[3] YANG Yang, WANG Le, MA Jian-hua, TONG Chen-xi, ZHANG Chun-hui, WANG Zhi-chao, TIAN Ying-hui, . Mechanism of submarine pipeline penetration into calcareous sand considering particle breakage effect [J]. Rock and Soil Mechanics, 2024, 45(2): 623-632.
[4] ZHANG Pei-sen, XU Da-qiang, LI Teng-hui, HU Xin, ZHAO Cheng-ye, HOU Ji-qun, NIU Hui, . Experimental study of seepage characteristics before and after grouting and mechanical characteristics after grouting of fractured sandstone [J]. Rock and Soil Mechanics, 2023, 44(S1): 12-26.
[5] MA Cheng-hao, ZHU Chang-qi, QU Ru, LIU Hai-feng, WANG Tian-min, HU Tao, . Multi-scale particle morphology analysis of coral sand in South China Sea [J]. Rock and Soil Mechanics, 2023, 44(S1): 117-126.
[6] LIU Fei-yu, ZHANG Shi-xun, XIONG Bo, . Effect of roughness on shear properties of sand-concrete interface with different particle sizes [J]. Rock and Soil Mechanics, 2023, 44(S1): 419-426.
[7] QU Ru, ZHU Chang-qi, LIU Hai-feng, WANG Tian-min, MA Cheng-hao, WANG Xing, . A comparative study of methods for determining boundary dry density of coral sand [J]. Rock and Soil Mechanics, 2023, 44(S1): 461-475.
[8] TIAN Sheng-kui, LIU Guan-shi, ZHAO Qing-song, XU Guo-fang, CAI Ming-xuan, . Experimental study of capillary water rising in aeolian sand using a moisture field testing technique based on image RGB information [J]. Rock and Soil Mechanics, 2023, 44(9): 2525-2536.
[9] LI Yao, LI Jia-ping, . Multi-directional cyclic simple shear behaviour of loose sand under complex initial stress states [J]. Rock and Soil Mechanics, 2023, 44(9): 2555-2565.
[10] YANG Zheng-tao, QIN You, WU Qi, , CHEN Guo-xing, . Influence of cyclic loading frequency on liquefaction behaviors of saturated coral sand [J]. Rock and Soil Mechanics, 2023, 44(9): 2648-2656.
[11] WANG Xiao-lei, LIU Li-teng, LIU Run, LIU Li-bo, DONG Lin, REN Hai. Shaking table test study on the influence of seismic history on liquefaction resistance of soils at different depths [J]. Rock and Soil Mechanics, 2023, 44(9): 2657-2666.
[12] SHEN Yang, MA Ying-hao, RUI Xiao-xi. Experimental study on pore water pressure characteristics and accumulated loss energy of saturated calcareous sand under wave loading [J]. Rock and Soil Mechanics, 2023, 44(8): 2195-2204.
[13] ZHAO Jin-qiao, DING Xuan-ming, LIU Han-long, OU Qiang, JIANG Chun-yong, . Laboratory experiment study on response of vibroflotation compaction of coral sand [J]. Rock and Soil Mechanics, 2023, 44(8): 2327-2336.
[14] YANG Qi, WANG Xiao-ya, NIE Ru-song, CHEN Chen, CHEN Yuan-zheng, XU Fang, . Characteristics of the cumulative plastic deformation and pore water pressure of saturated sand under cyclic intermittent loading [J]. Rock and Soil Mechanics, 2023, 44(6): 1671-1683.
[15] QIN You, DU Xin-yu, MA Wei-jia, WU Qi, CHEN Guo-xing, . A stress-based model for the generation of excess pore water pressure in saturated coral sand subjected to various cyclic stress paths [J]. Rock and Soil Mechanics, 2023, 44(6): 1729-1738.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .