Rock and Soil Mechanics ›› 2024, Vol. 45 ›› Issue (5): 1397-1411.doi: 10.16285/j.rsm.2023.0670

• Fundamental Theory and Experimental Research • Previous Articles     Next Articles

Fourier energy variational solution of effects on existing tunnels induced by shield tunneling considering coordinated deformation of lining cross-section

ZHANG Zhi-guo1, 2, 3, 4, 5, WO Wei1, ZHU Zheng-guo2, HAN Kai-hang3, SUN Miao-miao4, 5   

  1. 1. School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China; 2. State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures, Shijiazhuang Tiedao University, Shijiazhuang, Hebei 050043, China; 3. College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, Guangdong 518061, China; 4. Department of Civil Engineering, Zhejiang University City College, Hangzhou, Zhejiang 310015, China; 5. Zhejiang Engineering Research Center of Intelligent Urban Infrastructure, Hangzhou, Zhejiang 310015, China
  • Received:2023-05-27 Accepted:2023-07-10 Online:2024-05-11 Published:2024-05-07
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(42177145), the Opening Fund of State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures(KF2022-07) and the Opening Fund of Zhejiang Engineering Research Center of Intelligent Urban Infrastructure(IUI2022-YB-01).

Abstract: Current theoretical researches on shield tunneling induced existing metro tunnels deformation generally simplify the existing tunnels as Euler-Bernoulli beams without joints, neglecting the tunnel shear deformation and the local stiffness reduction caused by joints. Additionally, the existing foundation model theory rarely incorporates the coordination between lining cross-section and soil deformation. The study utilizes the Loganathan and Polous method to establish the shield tunneling-induced soil greenfield. To account for the local stiffness reduction, the paper then treats the existing tunnel as a Timoshenko beam, with the tunnel stiffness function varying along the axis. By combining the energy principle and the Mindlin solution, the paper stablishes the tunnel displacement equation considering the coordinated constraint between tunnel and soil. The soil greenfield is applied to the tunnel, resulting in longitudinal deformation, which is solved by Fourier series. Finally, the Fourier energy variational solution is verified by three sets of engineering data, achieving good consistency. To conduct parameter analysis, the relative effects among factors such as bending stiffness, shear stiffness, joint action, soil parameters and space relationship are also adopted. Analysis results indicate that the theoretical solution considering the coordinated constraints of cross-section aligns more closely with the field data. Tunnel displacement results obtained without considering the coordination constraints tend to be larger. The local stiffness weakening effect of joint will cause significant sudden variations in tunnel bending moments along the axis. The increase in both bending and shear stiffness coefficients leads to a decrease in the bending moment of the tunnel structure. Changes in shear stiffness coefficient from low to high would result in a three-stage process of the tunnel deformation mode, which is from bending controlled stage to bending-shear mixed stage and then to shear controlled stage. As the tunnel deformation mode enters the shear-controlled stage, the effect of bending stiffness coefficients gradually weakens. An increase in the joint coefficient generally causes a decrease in the bending moment of the tunnel, but the impact is slight as the bending coefficient increases.

Key words: shield tunnel, cross-sectional coordinated deformation, joint stiffness reduction, tunnel shear deformation, Timoshenko beam, Fourier energy variation

CLC Number: 

  • U 451
[1] HUANG Da-wei, LIU Jia-xuan, TAN Man-sheng, DENG Xiang-hao, HUANG Yong-liang, WENG You-hua, CHEN Sheng-ping. Scaled model test on interaction between a shield tunnel and ground [J]. Rock and Soil Mechanics, 2024, 45(S1): 371-381.
[2] WANG Xiao-gang, YANG Jian-ping, CHEN Wei-zhong, LI Hui, . Structural response characteristics of shield tunnels and analysis of joint stiffness [J]. Rock and Soil Mechanics, 2024, 45(S1): 485-495.
[3] ZHANG Zhi-guo, LUO Jie, ZHU Zheng-guo, PAN Y T, SUN Miao-miao, . Stability of shield tunnel excavation face under seismic action based on upper bound theorem of limit analysis [J]. Rock and Soil Mechanics, 2024, 45(4): 1201-1213.
[4] PAN Qiu-jing, WU Hong-tao, ZHANG Zi-long, SONG Ke-zhi, . Prediction of tunneling-induced ground surface settlement within composite strata using multi-physics-informed neural network [J]. Rock and Soil Mechanics, 2024, 45(2): 539-551.
[5] HUANG Ji-hui, QIN Shi-kang, ZHAO Yu, CHEN Jing-xu, ZHANG Hao, . Model of interaction between compressed air in the head chamber of shield tunneling and the gas-liquid two-phase flow in surrounding rock [J]. Rock and Soil Mechanics, 2024, 45(12): 3555-3565.
[6] LI Wen-bo, GAN Xiao-lu, LIU Nian-wu, WU Hao, SHEN Shan-shan. Calculation of uplift deformation during shield tunnel excavation based on a short beam-spring model [J]. Rock and Soil Mechanics, 2024, 45(12): 3755-3767.
[7] ZHEN Jia-jie, LAI Feng-wen, HUANG Ming, LI Shuang, XU Kai. Long sequence time series model to predict uplift of segmental lining in shield tunnel based on LightGBM-Informer [J]. Rock and Soil Mechanics, 2024, 45(12): 3791-3801.
[8] REN Lu-yao, WU Zhen-jie, HUANG Qi-chao, GUAN Zhen-chang. Analytical study on longitudinal seismic response of shield tunnels considering axial force [J]. Rock and Soil Mechanics, 2024, 45(10): 2971-2980.
[9] GAO Liu, LÜ Shu-hui, WANG Kui-hua. Dynamic characteristics of defective pile-beam system and its application [J]. Rock and Soil Mechanics, 2024, 45(10): 3095-3104.
[10] ZHANG Zhi-guo, YE Tong, ZHU Zheng-guo, PAN Y T, WU Zhong-teng, . Hydraulic and displacement response analysis of shield tunnel in gassy seabed under wave action [J]. Rock and Soil Mechanics, 2023, 44(6): 1557-1574.
[11] ZHONG Xiao-chun, HUANG Si-yuan, HUAI Rong-guo, ZHU Cheng, HU Yi-kang, CHEN Xu-quan, . Longitudinal uplift characteristics of segments of shield tunnels based on buoyancy of grouting [J]. Rock and Soil Mechanics, 2023, 44(6): 1615-1624.
[12] WANG Zu-xian, SHI Cheng-hua, GONG Chen-jie, CAO Cheng-yong, PENG Zhu, SUN Ying-jie, . Calculation model of longitudinal nonlinear equivalent bending stiffness of shield tunnel considering its transverse performance [J]. Rock and Soil Mechanics, 2023, 44(5): 1295-1308.
[13] LIU Yong, ZHOU Yi-sheng, SUO Xiao-ming, FAN Hao-bo, CAO Yi-ze, DU Zhi-tian, . Model test on the deformation law of shield tunnel underpassing high speed railway roadbed [J]. Rock and Soil Mechanics, 2023, 44(4): 941-951.
[14] WU Hong, YE Zhi, ZHANG Yu-ting, LIU Hua-bei, . Numerical study on seismic behavior of shield tunnel crossing saturated sandy strata with different densities [J]. Rock and Soil Mechanics, 2023, 44(4): 1204-1216.
[15] ZHANG Zhi-guo, LUO Jie, ZHU Zheng-guo, PAN Y T, SUN Miao-miao, . Upper limit solution for 3D logarithmic spiral model of stability on shield tunnel face under influence of heavy rainfall [J]. Rock and Soil Mechanics, 2023, 44(12): 3587-3601.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] SUN Yong. Research on calculation method of double-row anti-sliding structure under sliding surface[J]. , 2009, 30(10): 2971 -2977 .
[2] WANG Wei,WANG Shui-lin,TANG Hua,ZHOU Ping-gen. Application of 3-D GIS to monitoring and forecast system of landslide hazard[J]. , 2009, 30(11): 3379 -3385 .
[3] ZHANG Qiang-yong, LIU De-jun, JIA Chao, SHEN Xin, LIU Jian, DUAN Kang. Development of geomechanical model similitude material for salt rock oil-gas storage medium[J]. , 2009, 30(12): 3581 -3586 .
[4] CAO Xue-shan, YIN Zong-ze. Simplified computation of two-dimensional consolidation of unsaturated soils[J]. , 2009, 30(9): 2575 -2580 .
[5] GAO Qian, WANG Jing, YANG Zhi-fa, ZHANG Lu-qing, ZHU Jie-wang, ZHENG Jian. Stability analysis of the large ancient underground rock caverns in Longyou and the selection of maximum-security routes in the caverns[J]. , 2009, 30(9): 2713 -2721 .
[6] MA Yuan-gang, YANG Chun-he. Bearing capacity analysis of self-balanced load test pile under the control of limit state and deformation[J]. , 2009, 30(9): 2787 -2791 .
[7] QU Wan-bo, LIU Xin-rong, FU Yan, QIN Xiao-ying. Numerical simulation of preliminary lining of large section crossing tunnels constructed with PBA method[J]. , 2009, 30(9): 2799 -2804 .
[8] WANG Yang, ZHOU li, YIN Kun-long. Research on stability of sliding mass below water level based on analyzing water pressures around slices[J]. , 2010, 31(4): 1068 -1071 .
[9] WANG Chuan-ying, HU Pei-liang, SUN Wei-chun. Method for evaluating rock mass integrity based on borehole camera technology[J]. , 2010, 31(4): 1326 -1330 .
[10] LI Hua-ming, JIANG Guan-lu, LIU Xian-feng. Study of dynamic characteristics of saturated silty soil ground treated by CFG columns[J]. , 2010, 31(5): 1550 -1554 .