Rock and Soil Mechanics ›› 2024, Vol. 45 ›› Issue (7): 2050-2060.doi: 10.16285/j.rsm.2023.1281

• Fundamental Theory and Experimental Research • Previous Articles     Next Articles

Deterioration law of shear and compression characteristics of collapsible loess under dry-wet and freeze-thaw cycles

FAN Pei-pei1, 2, ZHANG Ling-kai1, 2, DING Xu-sheng1, 2   

  1. 1. College of Water Conservancy and Civil Engineering, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China; 2. Xinjiang Key Laboratory of Water Conservancy Engineering Safety and Water Disaster Prevention, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
  • Received:2023-08-28 Accepted:2023-12-06 Online:2024-07-10 Published:2024-07-19
  • Supported by:
    This work was supported by the Outstanding Youth Science Fund Project of Xinjiang Uygur Autonomous Region (2022D01E45), Special Projects on Key R & D Tasks of the Autonomous Region in 2022 (2022B03024-3), and Xinjiang Uygur Autonomous Region Water Conservancy Science and Technology Special (XSXJ-2023-22).

Abstract: A water conveyance open channel project in the northern Xinjiang region crosses a large area of collapsible loess. The mechanical properties of the collapsible loess have undergone severe degradation after years of exposure to rainfall, evaporation, and seasonal temperature fluctuations, making it highly susceptible to engineering phenomena such as channel foundation collapse and slope failure. To delve into the deterioration mechanism, direct shear, compression, and microscopic scanning tests were conducted on the collapsible loess under dry-wet & freeze-thaw cycles. The deterioration patterns of shear strength and compression properties, as well as their damage mechanisms, were analyzed at both macro and microscopic scales. The results of the study indicate (1) Straight shear test: with increasing the number of dry-wet-freeze-thaw cycles, the peak shear strength exhibits a three-stage trend: rapid decrease, decelerated rate of decrease, and eventual stabilization. The cohesion decreased exponentially, with the largest reduction occurring during the first cycle, and stabilizing after 5 cycles, reaching a degradation degree of 44.55%. The change in internal friction angle, which varied within 2.1°, was less affected by the wet-dry-freeze-thaw cycles, with a maximum degradation of 7.04%. (2) Compression test: the compression curve can be divided into two stages of elastic deformation and elastic-plastic deformation according to the consolidation yield stress σk, and σk shifts forward as the cycle times increase. The compression coefficient and compression index decreased exponentially or in a power function form with increasing cycle times, indicating reduced overall compressibility of the soil body. (3) Microstructure: through scanning electron microscope (SEM) analysis, under cycling, the number of large pores decreased while the number of medium and small pores increased, with the arrangement tending towards disorder. Large particles gradually transformed into medium and small particles, and their morphology tended to become rounded. Correlation analysis indicates that pore size and its angle are the main factors influencing shear strength. Pearson’s correlation coefficient reveals that particle morphology and pore size have the greatest influence on compression indices.

Key words: dry-wet and freeze-thaw cycles, collapsible loess, shear characteristics, compression characteristics, microstructure

CLC Number: 

  • TU 411
[1] HE Yuan-yuan, PENG Qi-lan, WANG Li, WANG Shi-mei, NIE Lei, XU Yan, LYU Yan, CHEN Yong, ZHANG Xian-wei. Investigating pore characteristics and permeability of seasonally frozen turfy soil using multiple micro-test methods [J]. Rock and Soil Mechanics, 2025, 46(1): 110-122.
[2] CHENG Xin, JIANG Wen-hao, HUANG Xiao, LI Shuang, WANG Ying-fu, LI Jiang-shan, . Engineering properties and microstructural evolution of self-hardening vertical barrier materials under the influence of Cr(VI) contaminated solution [J]. Rock and Soil Mechanics, 2024, 45(S1): 225-238.
[3] WANG Li-yan, JIANG Fei, ZHUANG Hai-yang, WANG Bing-hui, ZHANG Lei, LI Ming, . Dynamic characteristics and microscopic analysis of rubber-steel slag filler considering the influence of hydration period [J]. Rock and Soil Mechanics, 2024, 45(S1): 53-62.
[4] CHEN Kang, LIU Xian-feng, YUAN Sheng-yang, Ma Jie, CHEN Yi-han, JIANG Guan-lu, . Effect of water content on stiffness degradation and microstructure of red mudstone fill material [J]. Rock and Soil Mechanics, 2024, 45(7): 1976-1986.
[5] ZHANG Ke, GUAN Shi-hao, QI Fei-fei, XU Yi, JIN Ke-sheng, . Macromechanical properties and microstructure of sandstone under scouring effect [J]. Rock and Soil Mechanics, 2024, 45(7): 1929-1938.
[6] PAN Wang-sheng, ZHAO Tian-yin, LI Xin, . Priority connectivity model of loess microstructure and its significance for preferential flow [J]. Rock and Soil Mechanics, 2024, 45(6): 1709-1719.
[7] RUI Rui, TIAN Zi-jin, YANG Hai-qing, HUANG Teng, MENG Qing-hui, WANG Jin-yuan, . Static characteristics test of marine soft soil under the influence of temperature effect [J]. Rock and Soil Mechanics, 2024, 45(4): 1112-1120.
[8] MIN Fan-lu, SHEN Zheng, LI Yan-cheng, YUAN Da-jun, CHEN Jian, LI Kai, . Solidification and carbonization experimental study on magnesium oxide in shield waste soil and its carbonization mechanism [J]. Rock and Soil Mechanics, 2024, 45(2): 364-374.
[9] CHEN Kang, LIU Xian-feng, JIANG Guan-lu, YUAN Sheng-yang, MA Jie, CHEN Yi-han, . Effect of water content on dynamic properties of red mudstone fill material [J]. Rock and Soil Mechanics, 2024, 45(12): 3705-3716.
[10] ZHU Chuan-qi, WANG Lei, ZHANG Yu, SHANG Rui-hao, WANG An-cheng. Effect of moisture content on wave velocity and failure characteristics of soft coal [J]. Rock and Soil Mechanics, 2024, 45(11): 3271-3285.
[11] CHENG Guang, FAN Wen, YU Ning-yu, JIANG Cheng-cheng, TAO Yi-quan, . Correlation between soil-water characteristics and microstructure of soil-rock mixture [J]. Rock and Soil Mechanics, 2023, 44(S1): 365-374.
[12] HONG Yi, ZHENG Bo-wen, YAO Meng-hao, WANG Li-zhong, SUN Hai-quan, XU Dong, . Microstructure and one-dimensional compression characteristics of deep-sea diatomite [J]. Rock and Soil Mechanics, 2023, 44(S1): 268-276.
[13] ZHANG Yan-mei, ZHANG Jian, YUAN Yan-hao, SUN Wen-xiu, . Experimental study of coastal petroleum-contaminated soil using nano-SiO2 and lime as additives [J]. Rock and Soil Mechanics, 2023, 44(S1): 259-267.
[14] ZHANG Da-jin, XIAO Gui-yuan, WU Yue, XU Guang-li, LIU Wei, . Compression deformation mechanisms of red clay driven by heavy metal Cu2+ [J]. Rock and Soil Mechanics, 2023, 44(S1): 127-133.
[15] ZHANG Jun-ran, SONG Chen-yu, JIANG Tong, WANG Li-jin, ZHAO Jin-di, XIONG Tan-qing, . Hydromechanical characteristics and microstructure of unsaturated loess under high suction [J]. Rock and Soil Mechanics, 2023, 44(8): 2229-2237.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!