Rock and Soil Mechanics ›› 2024, Vol. 45 ›› Issue (12): 3802-3814.doi: 10.16285/j.rsm.2024.0235

• Numerical Analysis • Previous Articles    

Dynamic response of storage and drainage tunnel in saturated ground under water hammer

HUANG Chao1, QIAN Jian-gu1, 2, 3   

  1. 1. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China; 2. State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China; 3. College of Architecture and Civil Engineering, Xinjiang University, Urumqi, Xinjiang 830047, China
  • Received:2024-02-27 Accepted:2024-04-18 Online:2024-12-09 Published:2024-12-05
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (52178345).

Abstract: To investigate the three-dimensional dynamic response of a deeply buried storage and drainage tunnel in saturated soil subjected to water hammer, we propose a frequency-domain finite element method and boundary element method (FEM-BEM) coupling model for the fluid-lining-saturated soil system. The fluid is modeled as an inviscid and compressible fluid, the lining as an elastic medium conceptualized as a hollow cylinder of finite length, and the soil as a saturated poroelastic medium. Initially, the governing equations for the fluid and lining are solved using FEM in the frequency domain, while those for the soil are solved using BEM in the same domain. In the following, fluid, lining, and soil are coupled based on the conditions of deformation compatibility, force equilibrium, and impermeable boundary conditions at their interfaces. The presented model is verified through the comparison with the existing models. Finally, a case study of internal water pressure (water-hammer load) and the displacement and pore pressure of the saturated soil in a fluid-filled lined tunnel due to water hammer is presented. The results show that: (1) The dynamic response caused by the water hammer presents significant periodicity and attenuation. (2) The radial displacement of soil is significantly larger than that of axial displacement. (3) Modeling soil as a single-phase elastic medium inaccurately evaluates the dynamic response. (4) The water hammer makes an extensive impact on the ground surrounding the storage and drainage tunnel. (5) The peak values of internal fluid pressure, the soil displacement and pore pressure decrease with the decrease of soil permeability.

Key words: water hammer, storage and drainage tunnel, finite element method and boundary element method (FEM-BEM), saturated soil, dynamic response

CLC Number: 

  • TU435
[1] ZHANG Zhen-guang, XU Jie, FAN Jia-shen, . Novel plastic solutions of spherical cavity expansion in unsaturated soils under undrained conditions [J]. Rock and Soil Mechanics, 2025, 46(7): 1988-1996.
[2] YANG Ming-hui, CAI Ming-hui, CHEN Bo, YANG Han, . A method for calculating horizontal impedance of a single pile considering wave-induced seabed dynamic response [J]. Rock and Soil Mechanics, 2025, 46(5): 1563-1572.
[3] KE Wen-hai, YANG Wen-hai, LI Yuan, WU Lei, . Dynamic response of pile foundation in slope topography under SH wave [J]. Rock and Soil Mechanics, 2025, 46(5): 1545-1544.
[4] YANG Jing-quan, ZHENG Chang-jie, DING Xuan-ming, . Seismic response of pipe piles in saturated soil to vertically incident P-waves [J]. Rock and Soil Mechanics, 2025, 46(5): 1477-1488.
[5] SHANG Zhao-wei, KONG Ling-wei, YAN Jun-biao, GAO Zhi-ao, WANG Fei, LI Cheng-sheng, . Small-strain shear modulus properties of unsaturated granitic residual soils and determination method of soil-water retention curves [J]. Rock and Soil Mechanics, 2025, 46(4): 1131-1140.
[6] YE Yun-xue, YI Bo-wen, LIU Xiao-wen, WU Jun-hua, HONG Ben-gen, . Influence of water change path and volume change in soil on soil-water characteristic curve measured by filter paper method under drying path [J]. Rock and Soil Mechanics, 2024, 45(8): 2351-2361.
[7] XIE Zhou-zhou, ZHAO Lian-heng, LI Liang, HUANG Dong-liang, ZHANG Zi-jian, ZHOU Jing, . Difference of dynamic responses of soil-rock mixture slopes with different rock contents based on shaking table test [J]. Rock and Soil Mechanics, 2024, 45(8): 2324-2337.
[8] LI Fu-xiu, GUO Wen-hao, ZHENG Ye-wei. Shaking table test of the back-to-back reinforced soil walls with full-height rigid facing [J]. Rock and Soil Mechanics, 2024, 45(7): 1957-1966.
[9] ZHU Dan, JIANG Guan-lu, CHEN Hong-yu, ZHAO Xin-hui, HUANG De-gui, LIU Yi-fu, . Shaking table experimental study on the dynamic response characteristics of single and double-row pile-supported road graben slopes [J]. Rock and Soil Mechanics, 2024, 45(6): 1763-1777.
[10] WANG Zhi-de, SI Ying-ying, LI Jie, QIAN Meng-fan, AN Jia-xing, . Dynamic response of jointed granite under low strain rate impact load [J]. Rock and Soil Mechanics, 2024, 45(6): 1755-1762.
[11] LIU Hong-bo, DAI Guo-liang, ZHOU Feng-xi, GONG Zhi-yu, CHEN Zhi-wei, . Longitudinal dynamic response of strength composite piles embedded in viscoelastic unsaturated soils [J]. Rock and Soil Mechanics, 2024, 45(5): 1365-1377.
[12] WANG Ying, ZHAO Cai-qing, WANG Hai-ping, . Dynamic response solution of lined tunnel in unsaturated soil under internal explosive loading [J]. Rock and Soil Mechanics, 2024, 45(4): 1026-1038.
[13] PENG Jun-guo, HUANG Yu-hao. A new calculation method for the size of anchor plates in unsaturated slope [J]. Rock and Soil Mechanics, 2024, 45(4): 1003-1013.
[14] ZHANG Si-qi, PEI Hua-fu, TAN Dao-yuan, ZHU Hong-hu, . Experimental study on the variation pattern of pore size distributions for unsaturated clay with single or double pore structure [J]. Rock and Soil Mechanics, 2024, 45(2): 353-363.
[15] CHEN Ke, WANG Chen, LIANG Fa-yun, WANG Zhong-wei, . A new SWRC model of unsaturated soil considering the coupling of hydraulic hysteresis and volume deformation [J]. Rock and Soil Mechanics, 2024, 45(12): 3694-3704.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!