Rock and Soil Mechanics ›› 2025, Vol. 46 ›› Issue (2): 515-526.doi: 10.16285/j.rsm.2024.0485

• Fundamental Theory and Experimental Research • Previous Articles     Next Articles

Salt-inhibiting mechanism and effect of new saline soil-based foamed lightweight soil separation fault

ZHANG Rong1, 2, ZHAO Bin3, ZHENG Xiao-chuan3, CHEN Ling4, LU Zheng1, 5, ZHAO Yang1, 6   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. PowerChina Chongqing Engineering Co., Ltd., Chongqing 400060, China; 4. Ruibo New-Energy Group Co., Ltd., Taizhou, Zhejiang 317608, China; 5. Hubei Key Laboratory of Environmental Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 6. Xinjiang Transportation Planning Survey and Design Institute Co., Ltd., Urumqi, Xinjiang 830006, China
  • Received:2024-04-19 Accepted:2024-06-25 Online:2025-02-10 Published:2025-02-11
  • Supported by:
    This work was supported by the Sichuan Transportation Science and Technology Project (2021-ZL-05), the 2022 Annual Transportation Industry Science and Technology Project (2022-ZD-017), the Hubei Provincial Department of Transportation Science and Technology Project (2020-186-1-9), the Hubei Provincial Innovative Group Project (2023AFA019) and the Xinjiang Transportation Design Institute Scientific Research Fund Project (KY2022042504).

Abstract: Saline soil, common in the western China, poses a significant threat to road engineering due to its salt swelling characteristics. Therefore, studying the water-salt migration patterns within saline soil subgrades and developing methods to interrupt this migration are crucial for road safety prevention and control. Based on the utilization of excavated waste soil, a new type of foamed lightweight soil based on saline soil is proposed as a subgrade separation fault in saline soil areas. Using self-developed equipment, we tested internal temperature changes, vertical displacements, and water and salt distribution after freeze-thaw cycles. The objective was to evaluate its salt insulation and swelling suppression capabilities and to explore the microstructure-based mechanisms underlying salt inhibition. Results indicate that under a temperature gradient, water and salt in the saline soil sample migrate upward, accumulating mainly in the middle and upper sections. Notably, the novel foamed lightweight soil separation fault effectively blocks water and salt migration, significantly suppressing salt swelling. Interestingly, a higher soil salt content results in a more pronounced anti-swelling effect. The porous structure of the foamed lightweight soil can not only store salt effectively, but also block salt migration, allowing salt crystallization within the soil, thereby reducing salt swelling damage.

Key words: saline soil, water-salt migration, separation faults, freeze-thaw cycles, foamed lightweight soil

CLC Number: 

  • TU 448
[1] DING Xu-sheng, ZHANG Ling-kai, FAN Pei-pei, . Strength degradation law and nonlinear model of remolded loess under dry-wet freeze-thaw cycles condition [J]. Rock and Soil Mechanics, 2024, 45(S1): 324-336.
[2] ZHANG Ya-qin, YANG Ping, ZHANG Ting, HAN Lin-liang. Effects of salt content and freeze-thaw conditions on static and dynamic strength characteristics of freeze-thawed chloride silty clay [J]. Rock and Soil Mechanics, 2024, 45(S1): 157-166.
[3] FAN Pei-pei, ZHANG Ling-kai, DING Xu-sheng, . Deterioration law of shear and compression characteristics of collapsible loess under dry-wet and freeze-thaw cycles [J]. Rock and Soil Mechanics, 2024, 45(7): 2050-2060.
[4] ZHI Bin, WANG Shang-jie. Mechanical properties and damage mechanism of loess under dry-wet freeze-thaw cycle [J]. Rock and Soil Mechanics, 2024, 45(4): 1092-1102.
[5] ZHANG Feng, TANG Kang-wei, YIN Si-qi, FENG De-cheng, CHEN Zhi-guo, . Shear wave velocity and dynamic resilient modulus of frozen and thawed silty clay and their conversion relationship [J]. Rock and Soil Mechanics, 2023, 44(S1): 221-233.
[6] ZHANG Jian-xin, MA Chang-hu, LANG Rui-qing, SUN Li-qiang, YANG Ai-wu, LI Di, . Experimental study on mechanical properties of coastal remolded soft soil subjected to the freeze-thaw cycle under confining pressure [J]. Rock and Soil Mechanics, 2023, 44(7): 1863-1874.
[7] ZHOU Feng-xi, JU Wen-tao, ZHANG Liu-jun, . Thermal mass transfer and deformation characteristics of sulphate saline soil under unidirectional freezing [J]. Rock and Soil Mechanics, 2023, 44(3): 708-716.
[8] SONG Yong-jun, SUN Yin-wei, LI Chen-jing, YANG Hui-min, ZHANG Lei-tao, XIE Li-jun, . Meso-fracture evolution characteristics of freeze-thawed sandstone based on discrete element method simulation [J]. Rock and Soil Mechanics, 2023, 44(12): 3602-3616.
[9] CHEN Wei-zhi, ZHANG Sha-sha, LI An-hong, . Water and salt migration and deformation response of compacted coarse-grained saline soil under temperature cycle [J]. Rock and Soil Mechanics, 2022, 43(S2): 74-84.
[10] WEI Li, CHAI Shou-xi, LIU Zhu, WANG Pei, LI Fang, . Evaluation on compressive strength of fiber reinforced soil under freeze-thaw cycles by scanning election microscopy and nuclear magnetic resonance [J]. Rock and Soil Mechanics, 2022, 43(S2): 163-170.
[11] WANG Xu-chao, ZHANG Sha-sha, ZHAO Kai-xuan, . Salt expansion characteristics and analysis model of coarse-grained sulfate saline soil embankment fill material with increasing fines content [J]. Rock and Soil Mechanics, 2022, 43(8): 2191-2202.
[12] LI Min, YU He-miao, DU Hong-pu, CAO Bao-yu, CHAI Shou-xi, . Mechanical properties of saline soil solidified with the mixture of lime, fly ash and modified polyvinyl alcohol under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2022, 43(2): 489-498.
[13] QIAO Chen, WANG Yu, SONG Zheng-yang, LI Chang-hong, HOU Zhi-qiang, . Experimental study on the evolution characteristics of cyclic frost heaving pressure of saturated fractured granite [J]. Rock and Soil Mechanics, 2021, 42(8): 2141-2150.
[14] YANG Ai-wu, XU Cai-li, LANG Rui-qing, WANG Tao, . Three-dimensional mechanical properties and failure criterion of municipal solidified sludge under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2021, 42(4): 963-975.
[15] LIU Qian-qian, LI Jian, CAI Guo-qing, LI Peng-lin, LI Xin-zhe, . Experimental study on water retention characteristics of saline soil in the full suction range [J]. Rock and Soil Mechanics, 2021, 42(3): 713-722.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!