Rock and Soil Mechanics ›› 2025, Vol. 46 ›› Issue (4): 1215-1227.doi: 10.16285/j.rsm.2024.0865

• Fundamental Theory and Experimental Research • Previous Articles     Next Articles

Dynamic characteristics of silty clay in flood irrigation areas under cyclic loading

WANG Meng-jie1, 2, ZHANG Sha-sha1, 2, YANG Xiao-hua1, 2, ZHANG Chao1, YAN Chang-gen1, 2   

  1. 1. School of Highway, Chang’an University, Xi’an, Shaanxi 710064, China; 2. Xi’an Key Laboratory of Geotechnical Engineering for Green and Intelligent Transport, Chang’an University, Xi’an, Shaanxi 710064, China
  • Received:2024-07-11 Accepted:2024-08-21 Online:2025-04-11 Published:2025-04-15
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (42077265) and the Jinzhong Science and Technology Plan Project (2022-28).

Abstract: Dynamic triaxial tests were conducted to clarify the dynamic deformation characteristics of silty clay in flood irrigation areas under cyclic loading, using single-sample stepwise and multiple samples of constant amplitude. The effects of confining pressure, bias consolidation ratio, drainage conditions, dynamic load frequency, and cyclic stress ratio on the development law of cumulative plastic strain and residual dynamic pore pressure, the evolution characteristics of the hysteresis curve, and the change law of softening index of silty clay were studied. The results show that the development of cumulative plastic strain and residual dynamic pore pressure of soil under dynamic load is consistent. According to the stability theory, the dynamic behavior of samples under different test conditions can be divided into three typical cases: plastic stability, plastic creep and incremental failure. Under the basic conditions of this test, the boundary cyclic stress ratios of the three dynamic states of plastic stability, plastic creep, and incremental failure are around 0.30 and 0.40, respectively. The hysteresis characteristics of undrained specimens in the plastic stable state are obvious, and the hysteresis curve shows an S shape. With the progression of loading, soil experiences stiffness degradation. The cumulative plastic deformation of undrained specimens is smaller than that of drained specimens, and the softening index of soil under drained and undrained conditions remains stable at around 1.15 and 0.91, respectively, under lower cyclic stress ratios. Through grey relational analysis, it is found that the cyclic stress ratio has the greatest influence on the cumulative plastic strain and pore pressure ratio. The confining pressure exerts the greatest influence on the softening index. The parameters of the cumulative plastic strain model suitable for silty clay in flood irrigation areas have been determined, and the prediction effect is good.

Key words: dynamic triaxial test, silty clay, cyclic stress ratio, cumulative plastic strain, softening index

CLC Number: 

  • TU 411.3
[1] ZHOU Bo-han, ZHANG Wen-li, WANG Dong, . Numerical study of ball penetrometer for predicting strength of overconsolidated soils [J]. Rock and Soil Mechanics, 2025, 46(4): 1303-1309.
[2] WANG Ying, LIU Jia-yi, GAO Meng, KONG Xiang-xiao, . Experiment on dynamic characteristics of deep-sea gas-bearing energy soil under seismic loading [J]. Rock and Soil Mechanics, 2025, 46(2): 457-466.
[3] XIAO Si-qi, HUANG Ke-feng, ZHOU Hong-bo, . Prediction and statistical analysis of softening index of soft clay based on dynamic triaxial test [J]. Rock and Soil Mechanics, 2024, 45(S1): 133-146.
[4] ZHANG Jie, NIE Ru-song, HUANG Mao-tong, TAN Yong-chang, LI Ya-feng, . Analysis of ballast penetration phenomenon in ballast track under dynamic loads: experimental testing and DEM modeling [J]. Rock and Soil Mechanics, 2024, 45(6): 1720-1730.
[5] HUANG Feng, MI Ji-long, YANG Yong-hao, DONG Guang-fa, ZHANG Ban, LIU Xing-chen, . Morphological characteristics of hysteretic curves of soil-rock mixture under stepped axial cyclic loading [J]. Rock and Soil Mechanics, 2024, 45(3): 674-684.
[6] ZHANG Feng, TANG Kang-wei, YIN Si-qi, FENG De-cheng, CHEN Zhi-guo, . Shear wave velocity and dynamic resilient modulus of frozen and thawed silty clay and their conversion relationship [J]. Rock and Soil Mechanics, 2023, 44(S1): 221-233.
[7] WANG Kuan-jun, SHEN Kan-min, WANG Ming-yuan, WANG Hong-yu, GUO Zhen, . Strength interpretation parameter of piezoncone penetration test for soft clay in offshore area of Hangzhou Bay [J]. Rock and Soil Mechanics, 2023, 44(S1): 521-532.
[8] YANG Qi, WANG Xiao-ya, NIE Ru-song, CHEN Chen, CHEN Yuan-zheng, XU Fang, . Characteristics of the cumulative plastic deformation and pore water pressure of saturated sand under cyclic intermittent loading [J]. Rock and Soil Mechanics, 2023, 44(6): 1671-1683.
[9] LI Xue, WANG Ying, GAO Meng, CHEN Qing-sheng, PENG Xiao-dong, . Dynamic characteristics of unsaturated calcareous sand in South China Sea under seismic load [J]. Rock and Soil Mechanics, 2023, 44(3): 821-833.
[10] LI Li-hua, ZHANG Dong-fang, XIAO Heng-lin, WANG Cui-ying, DENG Yong-feng. Dynamic characteristics of reinforced rice husk ash modified soil [J]. Rock and Soil Mechanics, 2023, 44(12): 3360-3369.
[11] LI Ming-feng, WANG Yong-zheng, ZHANG Ting-ting, . Experimental study of cyclic dynamic behaviors of saturated soft clay in three-dimensional stress state [J]. Rock and Soil Mechanics, 2022, 43(6): 1523-1532.
[12] WANG Rui, PAN Xiao-hua, TANG Chao-sheng, LÜ Chao, WANG Dian-long, DONG Zhi-hao, SHI Bin. Dynamic behaviors of MICP and fiber-treated calcareous sand under dynamic triaxial testing [J]. Rock and Soil Mechanics, 2022, 43(10): 2643-2654.
[13] CHEN Shu-feng, KONG Ling-wei, LUO Tao, . Lateral stress release characteristics of overconsolidated silty clay and calculation method for lateral earth pressure coefficient at rest [J]. Rock and Soil Mechanics, 2022, 43(1): 160-168.
[14] LI Ya-feng, NIE Ru-song, LI Yuan-jun, LENG Wu-ming, RUAN Bo. Cumulative plastic deformation of subgrade fine-grained soil under intermittent cyclic loading and its prediction model [J]. Rock and Soil Mechanics, 2021, 42(4): 1065-1077.
[15] REN Hua-ping, LIU Xi-zhong, XUAN Ming-min, YE Xing-yu, LI Qiang, ZHANG Sheng. Study of cumulative plastic deformation of compacted silt under cyclic loading [J]. Rock and Soil Mechanics, 2021, 42(4): 1045-1055.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!