Rock and Soil Mechanics ›› 2025, Vol. 46 ›› Issue (7): 2062-2070.doi: 10.16285/j.rsm.2024.1188

• Fundamental Theory and Experimental Research • Previous Articles     Next Articles

Fine stability analysis of rock slope based on synthetic rock mass technology

XU Quan, HOU Jing, YANG Jian, YANG Xin-guang, NI Shao-hu, CHEN Xin   

  1. Yajiang Clean Energy Science and Technology Research (Beijing) Corporation Limited, Beijing 100038, China
  • Received:2024-09-25 Accepted:2024-10-14 Online:2025-07-10 Published:2025-07-08

Abstract: In the analysis of the stability of rocky slopes, determining the mechanical parameters of large-scale fractured rock masses is a critical challenge that needs to be addressed. This thesis utilizes unmanned aerial vehicle (UAV) photogrammetry technology to obtain centimeter-level three-dimensional real scene models of slopes. A software called Slope RMI was developed on the VS+C# platform using the OpenGL 3D graphics engine, which identifies rock mass structural features through line and surface interactions, achieving efficient recognition and statistical analysis of structural plane characteristics based on a high-precision 3D model of the study area. Additionally, a synthetic rock mass technique with target rock quality designation as a constraint was proposed, generating a large-scale rock slope calculation model that directly integrates three elements: the mechanical properties of rock, the mechanical properties of structural planes, and the geometric morphology of structural planes. This approach circumvents the difficulties associated with obtaining mechanical parameters of large-scale rock masses and provides a reliable pathway for detailed analysis of the stability of large-scale rocky slopes. The research method has been successfully applied in slope engineering, demonstrating its significant practical value in engineering applications.

Key words: UAV photogrammetry, rock slope, structural surface identification, synthetic rock mass technology, slope stability

CLC Number: 

  • TU 457
[1] DENG Dong-ping, XU Run-dong, PENG Yi-hang, WEN Sha-sha. Limit equilibrium method based on mode of slip surface stress analysis for slope stability under the characteristics of spatial heterogeneity and anisotropy in soil strength [J]. Rock and Soil Mechanics, 2025, 46(1): 55-72.
[2] LIN Bin-qiang, ZHANG De-sheng, JIAN Wen-bin, DOU Hong-qiang, WANG Hao, FAN Xiu-feng, . Response of vegetated slope stability under wind-driven rain conditions [J]. Rock and Soil Mechanics, 2024, 45(9): 2765-2774.
[3] LIU Wei, XU Chang-jie, DU Hao-dong, ZHU Huai-long, WANG Chang-hong. Stability analysis of overconsolidated unsaturated red clay slope based on modified UH model [J]. Rock and Soil Mechanics, 2024, 45(4): 1233-1241.
[4] DENG Dong-ping, PENG Yi-hang, LIU Meng-qi, LI Yuan-yuan. Limit equilibrium method for analyzing slope stability with nonlinear failure characteristics considering the coupling relationship of polar diameter, stress, and strength of the slip surface [J]. Rock and Soil Mechanics, 2024, 45(11): 3235-3258.
[5] FENG Song, ZHENG Ying-ren, GAO Hong, . A new Drucker-Prager criterion for geomaterials under conventional triaxial stress condition [J]. Rock and Soil Mechanics, 2024, 45(10): 2919-2928.
[6] QU Xiao-lei, ZHANG Yun-kai, CHEN You-ran, CHEN You-yang, QI Cheng-zhi, . Stability analysis of fractured rock slope based on seepage-deformation coupling model using numerical manifold method [J]. Rock and Soil Mechanics, 2024, 45(1): 313-324.
[7] WANG Zhi-ying, GUO Ming-zhu, ZENG Jin-yan, WANG Chen, LIU Huang. Experimental study on dynamic response of bedding rock slope with weak interlayer under earthquake [J]. Rock and Soil Mechanics, 2023, 44(9): 2566-2578.
[8] SHEN Hui, LIU Ya-qun, LIU Bo, LI Hai-bo, . Numerical study on the amplification effect of rock slopes under oblique incidence of seismic waves [J]. Rock and Soil Mechanics, 2023, 44(7): 2129-2142.
[9] LIU Guo-feng, FENG Kun, YAN Chang-gen, FENG Guang-liang, XU Ding-ping, ZHOU Chi, . Probabilistic evaluation of excavation unloading response of rock slope considering the uncertainty of mechanical parameters [J]. Rock and Soil Mechanics, 2023, 44(7): 2115-2128.
[10] WANG Chuan, LENG Xian-lun, ZHANG Zhan-rong, YANG Chuang, CHEN Jian, . Numerical study on failure path of rock slope induced by multi-stage excavation unloading based on crack propagation [J]. Rock and Soil Mechanics, 2023, 44(4): 1190-1203.
[11] LIU Xin-rong, GUO Xue-yan, XU Bin, ZHOU Xiao-han, ZENG Xi, XIE Ying-kun, WANG Yan, . Investigation on dynamic cumulative damage mechanism of the dangerous rock slope including deteriorated rock mass in hydro-fluctuation belt [J]. Rock and Soil Mechanics, 2023, 44(3): 637-648.
[12] XU Ming, YU Xiao-yue, ZHAO Yuan-ping, HU Jia-ju, ZHANG Xiao-ting. Analysis of seismic dynamic response and failure mode of bedding rock slope with laminated fractured structure [J]. Rock and Soil Mechanics, 2023, 44(2): 362-372.
[13] XIN Chun-lei, YANG Fei, FENG Wen-kai, LI Wen-hui, LIAO Jun. Shattering failure mechanism of step-like bedding rock slope under multi-stage earthquake excitations [J]. Rock and Soil Mechanics, 2023, 44(12): 3481-3494.
[14] ZHANG Wen-lian, SUN Xiao-yun, CHEN Yong, JIN Shen-yi, . Slope stability analysis method based on compressive strength reduction of rock mass [J]. Rock and Soil Mechanics, 2022, 43(S2): 607-615.
[15] YANG Xiao-feng, LU Zu-de, CHEN Cong-xin, SUN Chao-yi, LIU Xuan-ting, . Analysis of mechanical model of sliding-bending failure in bedding rock slopes with slab-rent structure [J]. Rock and Soil Mechanics, 2022, 43(S1): 258-266.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!