›› 1980, Vol. 2 ›› Issue (2): 33-46.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

APPLICATION OF FUZZY MATHEMATICS IN COMPREHANICS EVALUATION AND ENGINEERING CLASSIFICATION OF ROCK MASSES

Wang Jing-tao   

  1. Institute of Rock and Soil mechanics, Academia Sinica Wuhan, China
  • Online:1980-09-03 Published:2016-11-21

Abstract: The engineering classification of rock masses is one of the basic problems in rock mechanics .The main purpose of engineering classification of rock masses is comprehensively to evaluate rock masses ,to divide the rock masses into several proper classes and to offer guantitative data for engineering design .therefore engineering classification of rock masses is very important for engineering practice and aroused a great interest to the investigators of rock mechanics .On the basis of Bieniawski’s geomechanics classification of rock masses , a new method of engineering classification of rock masses has been proposed by means of the theory of modern fuzzy mathematics .In this classification the rock masses are evaluated on the basis of six parameters :the uniaxial compressive strength of the rock material drill core quality RQD, spacing ,orientation and condition of joints ,and ground water inflow. The rating for each parameter is determined and total rating for rock mass is specified by the method of weighted average .The rating and the weight for each parameter were considered as fuzzy variables . Therefore not only the total rating but also varying Range of total rating(or pthe membership of total rating ) are given .The randomly varying state of in situ rock masses can be described by this method of classification so that the result of comprehensively evaluating is more accurate than others . In additional, an accurate and simple evaluating method that is suitable for the engineers has been given .

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XU Ming, CHEN Jin-feng, SONG Er-xiang. Large scale triaxial testing of Douposi moderately-to-slightly weathered fill materials[J]. , 2010, 31(8): 2496 -2500 .
[2] ZHAO Jia-xi, QI Hui, YANG Zai-lin. Scattering of SH-waves by a shallow buried cylindrical inclusion with a partially debonded curve in half space[J]. , 2009, 30(5): 1297 -1302 .
[3] WEI Ning,LI Xiao-chun,WANG Yan,GU Zhi-meng. Resources quantity and utilization prospect of methane in municipal solid waste landfills[J]. , 2009, 30(6): 1687 -1692 .
[4] NIU Wen-jie,YE Wei-min,LIU Shao-gang,YU Hai-tao. Limit analysis of a soil slope considering saturated-unsaturated seepage[J]. , 2009, 30(8): 2477 -2482 .
[5] LIN Da-ming1,2,SHANG Yan-jun1,SUN Fu-jun3,SUN Yuan-chun1,2,WU Feng-bo1,2,LIU Zhi. Study of strength assessment of rock mass and application[J]. , 2011, 32(3): 837 -842 .
[6] DENG Dong-ping,LI Liang,ZHAO Lian-heng. A new method of sliding surface searching for general stability of slope based on Janbu method[J]. , 2011, 32(3): 891 -898 .
[7] LI Hui , YAN E-chuan , YANG Jian-guo , Lü Kun . Study of interaction of landslide mass and retaining wall under condition of reservoir water[J]. , 2012, 33(5): 1593 -1600 .
[8] LIU Tao-ying ,CAO Ping ,ZHANG Li-feng ,ZHAO Yan-lin ,FAN Xiang . Study of fracture damage evolution mechanism of compression-shear rock cracks under high seepage pressure[J]. , 2012, 33(6): 1801 -1815 .
[9] HU Zai-qiang, MA Su-qing, LI Hong-ru, ZHAO Kai, TIAN Yuan. Experimental study of nonlinear K-G model for unsaturated loess[J]. , 2012, 33(S1): 56 -60 .
[10] WANG Yu ,LI Jian-lin ,DENG Hua-feng ,WANG Rui-hong . Investigation on unloading triaxial rheological mechanical properties of soft rock and its constitutive model[J]. , 2012, 33(11): 3338 -3344 .